在列表中检索

共检索到 3

表碛厚度是冰川消融模拟及冰川径流精确量化的关键因素,可为表碛覆盖型冰川动力学、物质平衡、水文模型及下游地区的防灾减灾和水资源管理研究提供数据支持。基于Landsat 8遥感影像,利用能量平衡方程法反演喜马拉雅山南坡朗塘流域冰川表碛厚度,分析了典型冰川表碛厚度空间分布特征,并探讨了表碛厚度空间分布异质性成因。研究结果表明:(1)朗塘流域冰川表碛平均厚度为(0.25±0.02) m,其中Lirung为(0.55±0.02) m、Shalbachum为(0.48±0.02) m、Langshisha为(0.31±0.02) m、Langtang为(0.25±0.02) m;(2)沿纵剖面,各冰川表碛厚度从消融区上部到下部呈现增厚趋势,其中,Lirung、Shalbachum和Langtang冰川表碛堆积速率沿纵剖面从上到下先减小、后增大,而Langshisha冰川则逐渐减小;沿横剖面,Lirung、Shalbachum、Langtang冰川运动方向右侧表碛厚度大于左侧,而Langshisha两侧表碛厚、中间薄;(3)冰川纵剖面表碛堆积速率的差异主要由消融区下部冰川表面流速差异所引起;(4)冰...

期刊论文 2024-12-31

表碛厚度是冰川消融模拟及冰川径流精确量化的关键因素,可为表碛覆盖型冰川动力学、物质平衡、水文模型及下游地区的防灾减灾和水资源管理研究提供数据支持。基于Landsat 8遥感影像,利用能量平衡方程法反演喜马拉雅山南坡朗塘流域冰川表碛厚度,分析了典型冰川表碛厚度空间分布特征,并探讨了表碛厚度空间分布异质性成因。研究结果表明:(1)朗塘流域冰川表碛平均厚度为(0.25±0.02) m,其中Lirung为(0.55±0.02) m、Shalbachum为(0.48±0.02) m、Langshisha为(0.31±0.02) m、Langtang为(0.25±0.02) m;(2)沿纵剖面,各冰川表碛厚度从消融区上部到下部呈现增厚趋势,其中,Lirung、Shalbachum和Langtang冰川表碛堆积速率沿纵剖面从上到下先减小、后增大,而Langshisha冰川则逐渐减小;沿横剖面,Lirung、Shalbachum、Langtang冰川运动方向右侧表碛厚度大于左侧,而Langshisha两侧表碛厚、中间薄;(3)冰川纵剖面表碛堆积速率的差异主要由消融区下部冰川表面流速差异所引起;(4)冰...

期刊论文 2024-12-31

表碛厚度是冰川消融模拟及冰川径流精确量化的关键因素,可为表碛覆盖型冰川动力学、物质平衡、水文模型及下游地区的防灾减灾和水资源管理研究提供数据支持。基于Landsat 8遥感影像,利用能量平衡方程法反演喜马拉雅山南坡朗塘流域冰川表碛厚度,分析了典型冰川表碛厚度空间分布特征,并探讨了表碛厚度空间分布异质性成因。研究结果表明:(1)朗塘流域冰川表碛平均厚度为(0.25±0.02) m,其中Lirung为(0.55±0.02) m、Shalbachum为(0.48±0.02) m、Langshisha为(0.31±0.02) m、Langtang为(0.25±0.02) m;(2)沿纵剖面,各冰川表碛厚度从消融区上部到下部呈现增厚趋势,其中,Lirung、Shalbachum和Langtang冰川表碛堆积速率沿纵剖面从上到下先减小、后增大,而Langshisha冰川则逐渐减小;沿横剖面,Lirung、Shalbachum、Langtang冰川运动方向右侧表碛厚度大于左侧,而Langshisha两侧表碛厚、中间薄;(3)冰川纵剖面表碛堆积速率的差异主要由消融区下部冰川表面流速差异所引起;(4)冰...

期刊论文 2024-12-31
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页