欧亚大陆积雪是影响中高纬气候的重要因子,深入理解该区域积雪异常变化的特征及其成因,对于气候研究和预测有重要意义。目前的研究大多关注积雪年际、年代际变化及其气候效应,而有关积雪季节内变化的认识还有待加强。本文基于观测和再分析资料,通过统计诊断探讨了欧亚大陆不同区域春季融雪的季节内变化及其与之相关的大气环流特征和地表能量演变过程。结果表明,欧亚大陆春季融雪异常具有明显的季节内变化特征,其主导周期为10~30 d,且季节内变化的信号主要出现在斯堪的纳维亚半岛、东欧平原和西西伯利亚三个区域。进一步分析表明,斯堪的纳维亚半岛地区融雪季节内变化可能和斯堪的纳维亚半岛遥相关型负位相(SCA-)有关,东欧平原融雪季节内变化可能和欧亚遥相关型负位相(EU-)有关,西西伯利亚地区融雪季节内变化可能和斯堪的纳维亚半岛遥相关型正位相(SCA+)有关。不同区域导致融雪异常的原因存在明显差异,长波辐射增加可能是斯堪的纳维亚半岛区域开始发生融雪异常的主要原因;而在东欧平原和西西伯利亚区域,感热通量异常可能是开始发生融雪异常的主要原因。
欧亚大陆积雪是影响中高纬气候的重要因子,深入理解该区域积雪异常变化的特征及其成因,对于气候研究和预测有重要意义。目前的研究大多关注积雪年际、年代际变化及其气候效应,而有关积雪季节内变化的认识还有待加强。本文基于观测和再分析资料,通过统计诊断探讨了欧亚大陆不同区域春季融雪的季节内变化及其与之相关的大气环流特征和地表能量演变过程。结果表明,欧亚大陆春季融雪异常具有明显的季节内变化特征,其主导周期为10~30 d,且季节内变化的信号主要出现在斯堪的纳维亚半岛、东欧平原和西西伯利亚三个区域。进一步分析表明,斯堪的纳维亚半岛地区融雪季节内变化可能和斯堪的纳维亚半岛遥相关型负位相(SCA-)有关,东欧平原融雪季节内变化可能和欧亚遥相关型负位相(EU-)有关,西西伯利亚地区融雪季节内变化可能和斯堪的纳维亚半岛遥相关型正位相(SCA+)有关。不同区域导致融雪异常的原因存在明显差异,长波辐射增加可能是斯堪的纳维亚半岛区域开始发生融雪异常的主要原因;而在东欧平原和西西伯利亚区域,感热通量异常可能是开始发生融雪异常的主要原因。
土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G
土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G
高寒草原水热交换的季节性特征显著,土壤冻融过程对地-气水热交换有着重要的影响。本文利用黄河源区汤岔玛小流域2014年5月至2015年5月陆面过程观测数据,将土壤冻融过程划分为完全融化(TT)和完全冻结(FF)两种状态与融冻(T-F)和冻融(F-T)两个过程,并分析了期间高寒草原下垫面净辐射、感热通量、潜热通量和地表热通量不同状态和过程中的变化,以此探究土壤冻融过程中地气间的水热交换特征。研究表明:(1)净辐射通量在完全融化阶段的平均值要普遍大于其他三个阶段,最大值达到了203.7 W·m-2,冻融阶段冻土融化,土壤含水量逐渐增加,净辐射比完全冻结阶段明显增大,完全融化阶段净辐射日变化值最大,达到了717.6 W·m-2,完全冻结阶段最小,冻融阶段次之。(2)感热通量与潜热通量在完全融化和完全冻结阶段的配置不同。完全融化时,由于降水和土壤含水量等原因,净辐射主要转换为潜热通量,潜热通量日变化最大值为193.7 W·m-2,而感热通量只有80.0 W·m-2左右。融冻阶段、冻融阶段与完全冻结时感热与潜热的日平均相差不大,潜热在三个阶段平均值为21.9 W·m-2,感热为20.3 W·m-2...
高寒草原水热交换的季节性特征显著,土壤冻融过程对地-气水热交换有着重要的影响。本文利用黄河源区汤岔玛小流域2014年5月至2015年5月陆面过程观测数据,将土壤冻融过程划分为完全融化(TT)和完全冻结(FF)两种状态与融冻(T-F)和冻融(F-T)两个过程,并分析了期间高寒草原下垫面净辐射、感热通量、潜热通量和地表热通量不同状态和过程中的变化,以此探究土壤冻融过程中地气间的水热交换特征。研究表明:(1)净辐射通量在完全融化阶段的平均值要普遍大于其他三个阶段,最大值达到了203.7 W·m-2,冻融阶段冻土融化,土壤含水量逐渐增加,净辐射比完全冻结阶段明显增大,完全融化阶段净辐射日变化值最大,达到了717.6 W·m-2,完全冻结阶段最小,冻融阶段次之。(2)感热通量与潜热通量在完全融化和完全冻结阶段的配置不同。完全融化时,由于降水和土壤含水量等原因,净辐射主要转换为潜热通量,潜热通量日变化最大值为193.7 W·m-2,而感热通量只有80.0 W·m-2左右。融冻阶段、冻融阶段与完全冻结时感热与潜热的日平均相差不大,潜热在三个阶段平均值为21.9 W·m-2,感热为20.3 W·m-2...
选取青藏高原(下称高原)东部玛曲、玛多和垭口3个野外站点的观测资料,针对不连续积雪过程,研究高原东部不同季节的积雪过程对地表能量和土壤水热的影响。结果表明:受积雪高反照率的影响,高原东部地区各季节降雪后净短波辐射减小,净辐射较降雪前减小60%~140%;积雪积累期内感热、潜热及土壤热通量均减小,感热通量和土壤热通量出现负值。春、秋两季积雪过程中,能量以感热、潜热和土壤热通量三种形式分配;冬季积雪过程中能量以感热和土壤热通量分配为主,潜热通量较小,日均值在10 W·m-2左右;而夏季积雪消融期潜热通量较大,日均值可达80 W·m-2左右。各季节积雪的反复积累和消融过程对大气及土壤均以降温作用为主。秋季降雪后,气温和浅层土壤温度降低,当土壤温度降到冰点以下时,土壤提前进入冻结期;而春季降雪后,则可能使得正在发生融化的土壤又再次冻结。冬季晴天积雪过程中,在积雪积累期,积雪对土壤起增温作用,0~20 cm土壤温度日均值升高1~2℃,导致浅层冻结土壤融化,土壤含水量略增加,在消融期,积雪对土壤仍起降温作用;而冬季阴天积雪对土壤均为冷却作用。夏季积雪积累...
选取青藏高原(下称高原)东部玛曲、玛多和垭口3个野外站点的观测资料,针对不连续积雪过程,研究高原东部不同季节的积雪过程对地表能量和土壤水热的影响。结果表明:受积雪高反照率的影响,高原东部地区各季节降雪后净短波辐射减小,净辐射较降雪前减小60%~140%;积雪积累期内感热、潜热及土壤热通量均减小,感热通量和土壤热通量出现负值。春、秋两季积雪过程中,能量以感热、潜热和土壤热通量三种形式分配;冬季积雪过程中能量以感热和土壤热通量分配为主,潜热通量较小,日均值在10 W·m-2左右;而夏季积雪消融期潜热通量较大,日均值可达80 W·m-2左右。各季节积雪的反复积累和消融过程对大气及土壤均以降温作用为主。秋季降雪后,气温和浅层土壤温度降低,当土壤温度降到冰点以下时,土壤提前进入冻结期;而春季降雪后,则可能使得正在发生融化的土壤又再次冻结。冬季晴天积雪过程中,在积雪积累期,积雪对土壤起增温作用,0~20 cm土壤温度日均值升高1~2℃,导致浅层冻结土壤融化,土壤含水量略增加,在消融期,积雪对土壤仍起降温作用;而冬季阴天积雪对土壤均为冷却作用。夏季积雪积累...
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G0变为正值;土壤冻结使波文比增大,G0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与Rnet的日变化相反,限制了LE的增长。在冻结过程阶...
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G0变为正值;土壤冻结使波文比增大,G0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与Rnet的日变化相反,限制了LE的增长。在冻结过程阶...