在列表中检索

共检索到 3

选取了 2类新型道面快速修补料,测试了不同厚度(6、12、18、24、30 mm)薄层修补试件在-15℃低温养护环境下的水化反应温度变化曲线,研究了修补厚度和回弹冲击强度对薄层破坏的影响及规律,分析了薄层修补失效的破坏特征演变。结果表明,尽管低温抑制快速修补材料水化作用,材料B仍表现出初始水化反应剧烈、入模温度较高、有效水化反应时间较长等优点;在冻融循环和冲击荷载作用下,修补层破坏特征随着修补厚度增加由强度破坏演变为粘接能力失效而整体脱落;为保证修补层与原道面变形协调一致以及充分发挥材料自身强度和界面强度,建议超薄层修补时材料B修补厚度不超过4 mm。

期刊论文 2021-09-27

选取了 2类新型道面快速修补料,测试了不同厚度(6、12、18、24、30 mm)薄层修补试件在-15℃低温养护环境下的水化反应温度变化曲线,研究了修补厚度和回弹冲击强度对薄层破坏的影响及规律,分析了薄层修补失效的破坏特征演变。结果表明,尽管低温抑制快速修补材料水化作用,材料B仍表现出初始水化反应剧烈、入模温度较高、有效水化反应时间较长等优点;在冻融循环和冲击荷载作用下,修补层破坏特征随着修补厚度增加由强度破坏演变为粘接能力失效而整体脱落;为保证修补层与原道面变形协调一致以及充分发挥材料自身强度和界面强度,建议超薄层修补时材料B修补厚度不超过4 mm。

期刊论文 2021-09-27

选取了 2类新型道面快速修补料,测试了不同厚度(6、12、18、24、30 mm)薄层修补试件在-15℃低温养护环境下的水化反应温度变化曲线,研究了修补厚度和回弹冲击强度对薄层破坏的影响及规律,分析了薄层修补失效的破坏特征演变。结果表明,尽管低温抑制快速修补材料水化作用,材料B仍表现出初始水化反应剧烈、入模温度较高、有效水化反应时间较长等优点;在冻融循环和冲击荷载作用下,修补层破坏特征随着修补厚度增加由强度破坏演变为粘接能力失效而整体脱落;为保证修补层与原道面变形协调一致以及充分发挥材料自身强度和界面强度,建议超薄层修补时材料B修补厚度不超过4 mm。

期刊论文 2021-09-27
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页