在列表中检索

共检索到 3

利用1971~2019年羌塘自然保护区5个气象站逐日平均气温和地表温度,通过线性回归和Mann-Kendall等方法,分析气候变暖背景下近49a自然保护区大气和地面冻融指数的时空变化特征,并预估了 RCP4.5和RCP8.5两种排放情景下,未来80a(2021~2100年)大气和地面冻融指数的变化。结果表明:(1)自然保护区大气融化指数(ATI)、地面融化指数(GTI)总体上呈自西向东递减的分布,并随海拔升高而减少;大气冻结指数(AFI)和地面冻结指数(GFI)的分布规律不明显,但最大值均出现在安多站,最小值出现在不同站点。(2)近49a自然保护区AFI、GFI分别以-8.97℃·d·a-1、-10.45℃·d·a-1的速率显著减少,ATI、GTI则表现为显著增加趋势,增幅分别为7.05℃·d·a-1和11和11.38℃·d·a-1,地面冻融指数的变化率大于大气冻融指数的变化率。与青藏高原对比,自然保护区AFI、GFI减幅小,ATI增幅接近,GTI增幅大。(3) AFI、GFI在1970s~1990...

期刊论文 2022-01-25

利用1961-2015年吉林省46个气象站的气象数据,采用气候诊断分析方法,研究了吉林省季节冻土区年冻融指数的时空变化特征及其与经度、纬度、海拔的关系。结果表明:吉林省冻结指数呈由北向南逐渐降低,融化指数由西向东逐渐降低的趋势分布。1961-2015年冻结指数呈显著下降趋势,AFI(空气冻结指数)和SFI(地表冻结指数)气候倾向率分别为-48.7℃·d·(10a)-1和-166.8℃·d·(10a)-1。融化指数显著上升,ATI(空气融化指数)和STI(地表融化指数)分别以57.0℃·d·(10a)-1和93.7℃·d·(10a)-1的气候倾向率显著上升。SFI、ATI和STI分别于2001年、1994年和1997年发生了突变。20世纪60、70年代冻结指数异常偏高,融化指数异常偏低。吉林省年冻融指数的变化趋势在未来整体上依然延续下去,即冻结指数为下降趋势,融化指数为上升趋势。冻结指数受纬度影响最大,随着纬度的升高而上升,融化指数受海拔影响最大,随着海拔的升高而显著下降。冻结指数气候倾向率随着海拔的升高而上升,融化指数气候倾向率随着纬度的升高而上升。

期刊论文 2020-06-19

在冻土层之上筑路,由于会改变地 气界面的热物理特性,进而影响冻土层的热力→动力稳定性,故而修筑一定高度的路基成为保护冻土层所采取的一种常规措施.在修筑路基之后,与路基边坡的朝向有关的热效应是冻土路基工程保护措施必须考虑的问题.在数理分析与数值模拟分析的基础上,给出了可根据气温的年最大和最小月平均值计算路基表面的融化指数与冻结指数以及有关热状况参数的方法,并以青藏铁路北麓河段2002年为例进行了计算分析.实例分析表明,即便是没有修筑道路,北麓河地区的冻土也已经处于临界状态;路基相对的两个坡面,由于朝向不同会造成温度分布的强非均匀性,其中南和偏南方向与北和偏北方向的路基坡面热状况差异最大,有必要对路基相对的两个坡面采用不同的防护措施,一方面改善就地取土修筑路基对其下伏冻土层的直接不良影响,同时也尽可能减小路基表面温度分布的非均匀性,以避免纵向裂缝的发生.

期刊论文
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页