为分析冻土融化、爆破振动及降雨因素对高寒地区露天矿山边坡稳定性的影响,采用合成孔径边坡雷达监测及无人机航测技术,对某矿山边坡进行连续不间断监测,研究冻土融化、爆破振动及降雨因素影响下边坡的变形规律。研究结果表明:受冻土融化影响,区域变形均发生在白天温度较高时间段,夜晚基本无变形累积;爆破振动对作业附近松散岩体影响较大,1天内变形基本出现在爆破振动作业后的2~3 h内,其余时间基本无累积,变形曲线呈阶梯状增长;降雨后采场坡顶表土层出现多个分散分布的沉降变形区域,变形曲线没有明显规律。研究结果验证合成孔径雷达监测技术的有效性,为分析采场变形诱因提供参考。
作为“第三极”的青藏高原是全球中低纬度冰川最为发育的地区,被称为亚洲“水塔”。但是由于气候变暖等原因,青藏高原冰川的季节性消融导致大量的冰川融水季节性流入下游草甸生态系统,对生态系统结构和功能产生影响。由于真菌群落的结构和功能对水分变化十分敏感,冰川融水的季节性变化必然将显著影响冰川末端高寒草甸土壤真菌群落结构和功能。但是关于冰川融水增加对冰川区高寒草甸土壤真菌群落的影响的认识还十分有限。2019年在青藏高原唐古拉山龙匣宰陇巴冰川末端通过双向移栽试验和高通量测序方法研究了冰川融水的增加和减少对土壤真菌群落的影响,发现融水增加显著改变了真菌群落组成和降低了香农多样性指数,同时增加了上层土壤植物病原型和腐生型真菌的相对含量。融水减少改变了真菌群落组成并增加了真菌的α多样性,但是对真菌的影响与融水增加过程并不具有对称性。由于真菌的重要生态功能,研究结果对于更好地认识气候变化和冰川消融情形下,青藏高原冰川区高寒草甸的生态系统过程和功能变化具有重要意义。
利用1971~2019年羌塘自然保护区5个气象站逐日平均气温和地表温度,通过线性回归和Mann-Kendall等方法,分析气候变暖背景下近49a自然保护区大气和地面冻融指数的时空变化特征,并预估了 RCP4.5和RCP8.5两种排放情景下,未来80a(2021~2100年)大气和地面冻融指数的变化。结果表明:(1)自然保护区大气融化指数(ATI)、地面融化指数(GTI)总体上呈自西向东递减的分布,并随海拔升高而减少;大气冻结指数(AFI)和地面冻结指数(GFI)的分布规律不明显,但最大值均出现在安多站,最小值出现在不同站点。(2)近49a自然保护区AFI、GFI分别以-8.97℃·d·a-1、-10.45℃·d·a-1的速率显著减少,ATI、GTI则表现为显著增加趋势,增幅分别为7.05℃·d·a-1和11和11.38℃·d·a-1,地面冻融指数的变化率大于大气冻融指数的变化率。与青藏高原对比,自然保护区AFI、GFI减幅小,ATI增幅接近,GTI增幅大。(3) AFI、GFI在1970s~1990...
融沉是困扰多年冻土区工程建设与安全运营的关键因素之一。通过室内试验,针对两种初始干密度不同的青藏粉质黏土,在-8~24℃之间正弦波动的周期温度边界条件下,分别开展了无荷载、静荷载及动荷载作用下冻结饱和试样的融沉试验(试样的初始温度为-1℃),研究了试样内部温度、变形、孔隙水压力的时间变化过程。结果表明:温度边界相同时,在不同荷载作用下试样内部温度响应过程差异显著,反映了荷载对冻土融化速率的影响。在无荷载作用下,试样的竖向变形呈线性发展趋势,每次冻融过程中的融沉变形变化不大。在静荷载和动荷载作用下,试样的竖向变形呈先快速增加后逐渐稳定的趋势,且融化沉降变形主要发生在前3~4个冻融循环过程。试验结束时,在静、动荷载作用下试样最终变形量大于无荷载作用下,且干密度较小时竖向变形较大。在动荷载作用下,试样内部孔隙水压力变化幅度大于静荷载,且在前3次冻融循环过程中,动荷载作用下试样内部孔隙水压力消散数值大于静荷载,之后随着冻融循环次数的增加两者差异逐渐减小。试样融沉变形过程与温度变化、孔隙水压力的积累和消散过程密切相关。试验结果可为复杂边界条件下融化固结理论研究和工程中地基土体的融沉变形预测提供依...
利用1961-2015年吉林省46个气象站的气象数据,采用气候诊断分析方法,研究了吉林省季节冻土区年冻融指数的时空变化特征及其与经度、纬度、海拔的关系。结果表明:吉林省冻结指数呈由北向南逐渐降低,融化指数由西向东逐渐降低的趋势分布。1961-2015年冻结指数呈显著下降趋势,AFI(空气冻结指数)和SFI(地表冻结指数)气候倾向率分别为-48.7℃·d·(10a)-1和-166.8℃·d·(10a)-1。融化指数显著上升,ATI(空气融化指数)和STI(地表融化指数)分别以57.0℃·d·(10a)-1和93.7℃·d·(10a)-1的气候倾向率显著上升。SFI、ATI和STI分别于2001年、1994年和1997年发生了突变。20世纪60、70年代冻结指数异常偏高,融化指数异常偏低。吉林省年冻融指数的变化趋势在未来整体上依然延续下去,即冻结指数为下降趋势,融化指数为上升趋势。冻结指数受纬度影响最大,随着纬度的升高而上升,融化指数受海拔影响最大,随着海拔的升高而显著下降。冻结指数气候倾向率随着海拔的升高而上升,融化指数气候倾向率随着纬度的升高而上升。
为了研究高含冰量冻土路基的融化固结规律,在线性大变形融化固结理论的基础上引入非线性本构关系,并运用分段插值法实现了孔隙比与压缩模量之间的非线性关系,完善了三维大变形融化固结数值模拟方法。在此基础上结合青藏公路实测数据验证了其合理性。研究结果表明,采用非线性应力-应变关系的大变形融化固结理论能够显著提高高含冰量冻土路基的沉降计算精度,并能够进一步合理描述热学场和力学场的相互叠加影响。冻土融化固结度受有效融化固结时间以及特征排水长度等因素的影响呈现出完全不同于融土路基的发展规律,即在路基运营初期其融化固结度上升,随着时间发展,其固结度在达到峰值后持续降低,这主要是由于融化深度持续增大后所引起的特征排水长度的增加和有效融化固结时间的缩短所造成的。因此,在计算高含冰量冻土路基稳定性设计指标时,应采用非线性应力-应变关系来进一步提高融化深度、沉降以及固结度等指标的计算精度。
基于长期、连续的地温观测数据,对位于共和至玉树高等级公路沿线、平均海拔为4 260 m且处于高温冻土区的片块石路基温度、热状态、冻融循环过程和冻土人为上限及变化速率等进行了分析,研究了沥青混凝土和水泥混凝土路面对片块石路基下伏多年冻土的影响,以期对其适用性进行评价。研究发现,沥青混凝土路面的铺设使路基吸收了较多的热量,促使下伏多年冻土升温,导致多年冻土快速退化。观测期内,高温冻土地区沥青混凝土路面下片块石路基中心冻土退化速率为33.5 cm/a,几乎是天然地基的5倍。而且路基阴阳坡效应严重,阳坡路肩冻土退化速率为33.0 cm/a,明显大于阴坡路肩(22.0 cm/a)。与沥青混凝土路面相比,水泥混凝土路面较高的热反射率、较小的热辐射吸收率,有利于抬升冻土上限或减缓冻土退化速率。但在观测期间,发现处于高温冻土区的高等级公路片块石路基在沥青混凝土路面下融化盘面积增长速率为12.24 m2/a,而在水泥混凝土路面下为9.28 m2/a,即融化盘面积以不同程度的速率始终在增大。因此,单纯的片块石层的存在和路面类型的改变,并未彻底解决高温冻土区高等级...
以城区工程地质勘探为背景,针对北方季节性冻土层厚度大、土质坚硬、现有挖探方法效率低下等问题,在总结以往冻土挖探技术和现场挖探效率的基础上,分析影响挖探效率的关键因素,设计并制作了新型冻土融化设备,并采用煤作为热源融化冻土,具有热源持久、热量大、温度高、操作相对安全等优点;该融化设备自带煤渣收集器,并对套管连接方式进行了改进,便于挖探人员作业。改进后,挖探组开挖冻层进度达到0.56~0.82 m/h。
在莫喀高铁沿线770余公里的季节性冻土区内,依据地貌单元、微地貌、地层岩性与水文地质条件等特征设置了14个监测场,对季节性冻土的岩性、密度、含水率、地下水位、地温、近地面气温及雪盖的厚度和密度进行了频率为10天1次,持续时间为7个月(2016年10月1日2017年4月26日)的监测,依据监测数据分析了莫喀高铁沿线季节性冻土的冻结融化特征。分析结果表明:莫喀高铁沿线季节性冻土区的雪盖主要存在于10月下旬至翌年4月,雪盖厚度为20.2~38.2cm,平均值为27.3cm,最大积雪厚度为25~60cm,平均值为44.4cm,出现在2月上、中旬;莫喀高铁沿线季节性冻土的起始冻结时间为11月中、下旬,全部消融时间在翌年3月上旬4月中旬之间,存活时间为100~165d,平均时间为122d;季节性冻土的冻结速率为0.27~1.20cm·d-1,平均为0.50cm·d-1,融化速率为0.27~2.52cm·d-1,平均为1.14cm·d-1;在土体的冻结期间,雪盖减小了地...
选取东北多年冻土区锥柱式电力杆塔基础为研究对象,基于含相变的热传导理论,采用有限元方法对-1.8℃、-3.5℃和-6.1℃三种年平均气温下不采取保护措施和采取PUR保温板措施的塔基温度场、基底温度变化以及基底的融化层厚度进行了数值分析.结果表明,东北多年冻土区电力杆塔基础修筑过程中,由于施工以及混凝土杆塔良好的导热作用,会对地基土体的温度场产生较大的扰动.施工完成后短时间内杆塔基础底部温度会快速升高,导致地基土体发生融化,严重威胁电力杆塔的热稳定性.在基础旁边设置PUR保温板能明显减弱塔基底部多年冻土温度的上升,有效控制塔基底部的融化范围,对塔基热稳定性具有明显的提升作用.