为深入了解高原冻融区填石通风路基热量传递规律及沉降变形特征,依托新疆喀喇昆仑山区G219线冻融区新建公路工程,通过现场布设温度传感器和沉降监测点,对填石通风路基的温度变化和沉降变形进行实时监测。监测数据分析表明,填石通风路基对道路内部热量传入起到阻碍作用,并且随填土高度增加,通风路基底部出现明显的温度滞后现象,降低路基的整体沉降变形,减缓阴阳坡效应。
为深入了解高原冻融区填石通风路基热量传递规律及沉降变形特征,依托新疆喀喇昆仑山区G219线冻融区新建公路工程,通过现场布设温度传感器和沉降监测点,对填石通风路基的温度变化和沉降变形进行实时监测。监测数据分析表明,填石通风路基对道路内部热量传入起到阻碍作用,并且随填土高度增加,通风路基底部出现明显的温度滞后现象,降低路基的整体沉降变形,减缓阴阳坡效应。
为深入了解高原冻融区填石通风路基热量传递规律及沉降变形特征,依托新疆喀喇昆仑山区G219线冻融区新建公路工程,通过现场布设温度传感器和沉降监测点,对填石通风路基的温度变化和沉降变形进行实时监测。监测数据分析表明,填石通风路基对道路内部热量传入起到阻碍作用,并且随填土高度增加,通风路基底部出现明显的温度滞后现象,降低路基的整体沉降变形,减缓阴阳坡效应。
为深入了解高原冻融区填石通风路基热量传递规律及沉降变形特征,依托新疆喀喇昆仑山区G219线冻融区新建公路工程,通过现场布设温度传感器和沉降监测点,对填石通风路基的温度变化和沉降变形进行实时监测。监测数据分析表明,填石通风路基对道路内部热量传入起到阻碍作用,并且随填土高度增加,通风路基底部出现明显的温度滞后现象,降低路基的整体沉降变形,减缓阴阳坡效应。
为分析中俄原油管道加格达奇输油泵站供电线路—泵站甲线与乙线12#、14#塔基周边多年冻土的退化特征,在不同季节通过高密度电法探明融区分布范围并评估炉灰换填措施对多年冻土的防护效能。研究结果表明,电阻率差异可有效表征塔基周边多年冻土空间分布规律、退化过程及融区成因。塔基工程诱发积水垂向渗流热侵蚀。融化多年冻土层与风化层为水体渗流提供水力通道,导致塔间下方土层孔隙水富集与岩层低阻特性,形成贯通融区(最大融深>28 m)。相比于甲线14#(融深16 m),炉灰换填使乙线14#下部融深减少1.5 m,横向融区扩展范围缩小约60%,显著延缓了基础周边融区发育。研究结果可为多年冻土区工程扰动及病害防治策略研究提供重要基础数据。
为分析中俄原油管道加格达奇输油泵站供电线路—泵站甲线与乙线12#、14#塔基周边多年冻土的退化特征,在不同季节通过高密度电法探明融区分布范围并评估炉灰换填措施对多年冻土的防护效能。研究结果表明,电阻率差异可有效表征塔基周边多年冻土空间分布规律、退化过程及融区成因。塔基工程诱发积水垂向渗流热侵蚀。融化多年冻土层与风化层为水体渗流提供水力通道,导致塔间下方土层孔隙水富集与岩层低阻特性,形成贯通融区(最大融深>28 m)。相比于甲线14#(融深16 m),炉灰换填使乙线14#下部融深减少1.5 m,横向融区扩展范围缩小约60%,显著延缓了基础周边融区发育。研究结果可为多年冻土区工程扰动及病害防治策略研究提供重要基础数据。
为分析中俄原油管道加格达奇输油泵站供电线路—泵站甲线与乙线12#、14#塔基周边多年冻土的退化特征,在不同季节通过高密度电法探明融区分布范围并评估炉灰换填措施对多年冻土的防护效能。研究结果表明,电阻率差异可有效表征塔基周边多年冻土空间分布规律、退化过程及融区成因。塔基工程诱发积水垂向渗流热侵蚀。融化多年冻土层与风化层为水体渗流提供水力通道,导致塔间下方土层孔隙水富集与岩层低阻特性,形成贯通融区(最大融深>28 m)。相比于甲线14#(融深16 m),炉灰换填使乙线14#下部融深减少1.5 m,横向融区扩展范围缩小约60%,显著延缓了基础周边融区发育。研究结果可为多年冻土区工程扰动及病害防治策略研究提供重要基础数据。
为分析中俄原油管道加格达奇输油泵站供电线路—泵站甲线与乙线12#、14#塔基周边多年冻土的退化特征,在不同季节通过高密度电法探明融区分布范围并评估炉灰换填措施对多年冻土的防护效能。研究结果表明,电阻率差异可有效表征塔基周边多年冻土空间分布规律、退化过程及融区成因。塔基工程诱发积水垂向渗流热侵蚀。融化多年冻土层与风化层为水体渗流提供水力通道,导致塔间下方土层孔隙水富集与岩层低阻特性,形成贯通融区(最大融深>28 m)。相比于甲线14#(融深16 m),炉灰换填使乙线14#下部融深减少1.5 m,横向融区扩展范围缩小约60%,显著延缓了基础周边融区发育。研究结果可为多年冻土区工程扰动及病害防治策略研究提供重要基础数据。
为分析中俄原油管道加格达奇输油泵站供电线路—泵站甲线与乙线12#、14#塔基周边多年冻土的退化特征,在不同季节通过高密度电法探明融区分布范围并评估炉灰换填措施对多年冻土的防护效能。研究结果表明,电阻率差异可有效表征塔基周边多年冻土空间分布规律、退化过程及融区成因。塔基工程诱发积水垂向渗流热侵蚀。融化多年冻土层与风化层为水体渗流提供水力通道,导致塔间下方土层孔隙水富集与岩层低阻特性,形成贯通融区(最大融深>28 m)。相比于甲线14#(融深16 m),炉灰换填使乙线14#下部融深减少1.5 m,横向融区扩展范围缩小约60%,显著延缓了基础周边融区发育。研究结果可为多年冻土区工程扰动及病害防治策略研究提供重要基础数据。
为分析中俄原油管道加格达奇输油泵站供电线路—泵站甲线与乙线12#、14#塔基周边多年冻土的退化特征,在不同季节通过高密度电法探明融区分布范围并评估炉灰换填措施对多年冻土的防护效能。研究结果表明,电阻率差异可有效表征塔基周边多年冻土空间分布规律、退化过程及融区成因。塔基工程诱发积水垂向渗流热侵蚀。融化多年冻土层与风化层为水体渗流提供水力通道,导致塔间下方土层孔隙水富集与岩层低阻特性,形成贯通融区(最大融深>28 m)。相比于甲线14#(融深16 m),炉灰换填使乙线14#下部融深减少1.5 m,横向融区扩展范围缩小约60%,显著延缓了基础周边融区发育。研究结果可为多年冻土区工程扰动及病害防治策略研究提供重要基础数据。