为探讨多年冻土原状样承受竖向外荷载时的强度和变形特性,对不同深度的原状冻土样进行单轴试验和固结试验,并分析了冻土抗压强度、弹性模量、破坏形态、融沉特性.试验表明:在单轴试验中,浅层土的应力-应变曲线为不规则的非线性曲线,深土层的应力-应变曲线为抛物线形式曲线,随着含冰量的增加以及含砂量的减少,荷载由土颗粒骨架发展为冰晶体承担,抗压强度和弹性模量随深度的增加先减小后增大.冻土的破坏分为三种:延性破坏时外部无明显裂痕,仅产生挤压变形;弱面剪切破坏引起侧向裂缝以及侧向挤压变形;轴向分裂破坏的裂痕从中间至轴向展开.在固结试验中,主固结一般发生在前100 min,深层土的固结应变及融沉系数比浅土层大,且深土层融沉系数受荷载影响较大.
全球气候变暖加剧了多年冻土退化,冻土融化下沉严重威胁管道的安全运营,准确评价管基土融沉风险等级显得尤为重要。选取含水率、孔隙比、含冰量、超塑含水率4个重要的融沉影响因素,通过熵值法对各指标进行客观赋权,采用可拓云模型对多年冻土区管基土融沉等级进行评价。评价模型在中俄原油管道漠大线的实践应用表明:现行规范对多年冻土区管基土评价指标单一、界限含水率过大,同时k-means评价融沉等级界限相对模糊,而熵值-可拓云模型能够避免融沉指标界限模糊、影响因素间的不确定性,使评价结果更符合实际情况,可为多年冻土区管道的设计、运营管理中的融沉防护方案提供科学依据与理论参考。(图3,表7,参33)
以国道322库—根公路工程为依托,通过对沿线多年粉质黏土冻土原状样进行融沉试验,分析了融沉系数随含水率、干密度的变化规律,发现弱融沉以上等级的粉质黏土冻土原状样的融沉系数随含水率的增大而增大、随干密度的增大而减小的规律,进而提出了多年冻土区粉质黏土路基的治理思路,为极寒地区多年冻土路基融沉治理提供了理论参考与科学依据。
多年冻土区运营的油气管道的地基土冻胀融沉容易引起管道的屈曲变形,严重影响管道的安全稳定。以大兴安岭多年冻土区中俄原油管道沿线4种典型的管道地基土为研究对象,通过冻胀、融沉试验分析了各种土样的融沉系数、冻胀率与其影响因素之间的关系,采用灰色关联度法对融沉系数、冻胀率影响因素的敏感性进行了分析。结果表明:试验土样的融沉系数和冻胀率受含水率、干密度等因素影响较大,超塑含水率、含泥量及烧失量对粉土、砂土及泥炭化土亦有显著影响。通过灰色关联度分析可知,含水率虽是冻胀、融沉的最主要影响因素,但并非绝对,对于有的土质其含泥量与超塑含水率起主要作用,设计施工时需要高度重视。研究结果可为多年冻土区埋地管道的设计、施工、运营维护以及冻害防治提供科学依据与理论参考。(图10,表7,参23)
为探究冻融循环作用对季节性冻土区铁路路基变形特性的影响,以兰新铁路的路基填土为研究对象进行冻融循环试验和固结压缩试验,得到了冻融变形和压缩特性的变化规律,并利用正交试验对压缩特性的影响因素进行显著性分析。试验结果表明:随着冻融循环次数的增加,冻胀率和融沉系数均呈多项式函数增加;在相同冻融循环次数下,两者均与含水率呈正相关,与压实度呈负相关。压缩模量随冻融循环次数的增加先增加,最终趋于稳定,各因素及其交互作用对压缩模量的影响从高到低依次为压实度B、含水率C、冻融循环次数A、B和C的交互作用BC、A和B的交互作用AB、A和C的交互作用AC。建议选取9次冻融循环后的压缩模量作为兰新铁路路基强度设计值,该研究成果对防治冻胀融沉和控制路基变形具有一定的指导意义。
【目的】沿海城市轨道交通主要穿越海相深厚软土,需要大量使用冻结法施工,而该地区典型土层热物理特性是冻结法设计的关键依据。研究土质、冻融条件等因素对海相人工冻土冻结温度、热物理性质和冻融性质的影响可为该地质条件下的隧道施工提供基础资料。【方法】选取宁波地区3种典型土层,即淤泥质黏土、粉质黏土和砂质粉土,开展冻结温度和热物理参数测定,以及封闭与开放系统下冻胀融沉试验。【结果】3种土层冻结温度为-0.43-0.23℃,且以砂质粉土的较高,粉质黏土的次之,淤泥质黏土的较低;不同土层热物理性质不同,但其常温土的导热系数和容积热容量大小呈现一致性,表现为砂质粉土最大,粉质黏土次之,淤泥质黏土最小;冻土的导热系数、容积热容量和导温系数均大于常温土,冻土导热系数为常温土导热系数的1.37~1.77倍,且颗粒越粗差异越大;各土层冻胀率和融沉系数相差较大,冻胀率较大的土层其融沉系数也较大,表现为淤泥质黏土>粉质黏土>砂质粉土;开放系统补水冻结过程下各土层冻胀率和融沉系数分别为封闭系统冻结过程不补水工况下冻胀率和融沉系数的1.23~1.88倍和1.21~1.84倍。不论是开...
为了研究人工凿井冻结法施工中冻结壁解冻融沉效应的产生而导致井筒壁后附加力的变化,以徐州黏土冻融为研究对象,通过人工冻结土融沉特性试验,分别开展了人工冻土不同含水率、不同单向冻结温度梯度、不同外荷载的冻融特性分析。结果表明:试验系统补水情形下,相同干密度的黏土单向冻结温度梯度为1.4℃/cm时融沉量值为0.98 mm,大于2.0℃/cm融沉量值0.61 mm,增大幅值约60.6%;相同单向冻结温度梯度下,随着外载荷的增大融沉量随之增大,两者增长趋势一致,但幅度不一致。基于对冻土融沉特性受多因素综合影响的认识,采用改进的人工神经网络方法,建立了多样本、多因素影响下的融沉系数关系数据库,误差分析表明,改进的预测算法具有较好的精度。
文章论述了冻土融化压缩特性试验,并得出融沉系数与冻土的含水(冰)量、干容重关系曲线及融化压缩系数与冻土的含水(冰)量、干容重曲线关系,由试验结果发现冻土的融沉系数和融化压缩系数与冻土的含水量和干容重可近似的呈线形关系。
融沉变形破坏是多年冻土区建筑物冻害的主要原因之一,实际的融沉量是热融沉陷与压缩沉降量的叠加:冻土融化体积压缩系数是估算冻土融后压缩沉降变形量的关键计算参数。根据286个冻土原状样融沉压缩试验数据资料,对细砾土、砂土、粉土、黏性土、泥炭化黏性土和泥炭质土等6类土,分别提出了在0~100 kPa和0~200 kPa压力段两种条件下的体积压缩系数和干密度之间的线性、二项式和对数式回归分析方程式。在此基础上,给出了确定6类土体积压缩系数的经验数据表。此外,还指出了现有规范推荐方法和建议值所存在的问题。
在冻土工程中,冻土的融沉性评价是工程地质勘察的主要内容之一,融沉性分类是冻土地基基础设计施工的重要依据.根据345个冻土原状样品融沉压缩试验数据,提出了细砾、砂土、粉土、黏性土、泥炭化黏性土和泥炭质土等6类土的融沉系数-含水量或融沉系数-超塑含水量线性回归方程式,得到与各融沉性分级相应的界限含水量或界限超塑含水量.最后,简述了国内冻土融沉性分类现状,并分细粒土和粗粒土两种情况,将分类成果与国内现行规范冻土融沉性分类进行对比.