为准确预测并有效控制高寒高海拔地区洞室围岩的稳定性,针对不同冻融循环作用下砂岩进行分级卸荷蠕变试验,揭示砂岩衰减、稳态和加速蠕变3阶段特征;通过引入非线性粘滞元件对牛顿黏性系数进行修正,将冻融循环与三轴卸荷蠕变行为相结合,提出能够表征蠕变全过程的非线性黏弹塑性本构模型,并基于ABAQUS用户自定义材料接口完成模型二次开发。研究结果表明:该模型较传统西原模型显著提高蠕变行为拟合精度。研究结果可为高寒高海拔地区洞室围岩卸荷蠕变预测与稳定性控制提供理论支撑。
为了研究高温冻土蠕变变形特征以及各影响因素对蠕变的作用,分别在含水量15%、25%及35%,荷载100kPa、200kPa及300kPa,温度-1.5℃、-0.7℃及-0.3℃的条件下开展了室内单轴蠕变试验,分析在无侧限条件下高温冻土在不同温度、荷载及含冰量条件下的蠕变变形特性。结果表明:在当前试验条件下,冻土蠕变变形非常可观,且蠕变曲线都没有出现渐进流阶段;温度是影响冻土蠕变的最重要的外在因素,而含冰量是影响冻土蠕变的关键内在因素;在高含冰量条件下温度及荷载的改变对蠕变速率的影响非常显著,甚至引起量级上的差别。在现有试验条件下,高温冻土蠕变过程可利用Burgers黏弹性模型来较好地描述。
为了研究低温冻土地区软土路基蠕变变形规律,考虑低温和含水率对软土路基蠕变特性的影响,结合KBurgers-MC模型,建立了软土路基的蠕变损伤本构模型。利用C++语言编写了蠕变损伤模型动态链接库文件,通过FLAC3D软件对东港高速公路软土路基蠕变进行数值计算,计算结果表明:桩长对软土路基蠕变沉降有着重要的影响,增加桩长后软土路基蠕变沉降量、蠕变速率和塑性区明显减小;低温环境下含水状态的路基蠕变沉降值小于干燥状态,然而当含水率超过一定界限时路基会发生冻胀现象,导致蠕变沉降量增大;路基的蠕变速率随着温度的升高逐渐增大。将现场监测与数值计算结果进行比较,验证了数值计算的准确性,研究结果对于北方沿海软土路基蠕变沉降的防治具有指导意义。
在冻结法施工中,掌握冻土的蠕变特性对评价冻结壁的稳定性至关重要。文章通过对山西某矿粘土层进行不同冻结温度下单轴抗压及蠕变试验,得到蠕变随冻结温度、加载应力变化的规律。在分析Kachanov损伤理论模型及人工冻土蠕变经验模型特性的基础上,建立人工冻土理论-经验蠕变模型。通过对比分析建立模型计算值与人工冻结粘土蠕变试验结果,模型计算曲线与试验数据曲线拟合度较高,两者均反映了初始弹性变形、应变加速度逐渐减小至加速度为零的过程;若试样发生破坏,曲线则会在应变加速度为零的基础上继续加速上升。该模型能够反映深部人工冻土的各阶段蠕变特性,能为指导冻结法施工提供科学依据。
为了使广义西原模型可以描述冻土的各个变形阶段,用非线性牛顿体替代线性牛顿体进行改进,采用类比的方法将冻土单轴应力状态下的本构方程推广到三维状态;在ABAQUS中利用二次开发平台,编写了改进广义西原模型的UMAT子程序,并在单轴、三轴蠕变条件下进行检验。单轴蠕变的数值解与解析解计算结果十分吻合,两淮地区深部冻结粘土三轴蠕变试验模拟值与实验值相符。表明改进的广义西原模型可以很好地描述冻土蠕变变形特征,包括加速蠕变阶段,UMAT子程序可以用于冻结法施工工程数值模拟。
天然岩土通过人工冻结,其各项力学性能都会发生变化,为了更好地研究滨海软土地层人工冻土的蠕变性能,本文对福州地铁2号线各车站典型地层做了系统针对性试验研究。针对原状土样,在尽量减小扰动情况下,进行室内冻结试验,根据试验可得:相同温度下含水量较小的冻结土单轴抗压强度更大;当仅考虑非稳定蠕变阶段和稳定蠕变阶段时,蠕变可以用方程ε=AσBtC描述。
为了获得深厚冲积层的冻土物理力学参数,从施工现场获得了十个层位(-193-624m)的原状土样,在实验室中完成了十个层位重塑土冻结后的物理力学参数测试。试验结果表明:相同冻结温度条件下,第2层冻土冻胀力最大,第8层冻土冻胀力次之,而第9层冻胀力最低;第5土层冻结后单轴抗压强度最高,地层冻结稳定性较好,相比较第8层单轴抗压强度最低,地层冻结稳定性较差;第4~6层土层的粘聚力受冻结温度影响较为敏感;-15℃的冻结土层条件下,不同恒定应力剪切时第3、4、5层黏土的剪切蠕变变形量相对较大。地层土层结构特征、含水率、温度、应力与时间是影响冻土强度的关键因素。
对目前冻土蠕变试验研究和模型研究的研究成果进行了总结。从微观蠕变试验和宏观蠕变试验两方面对冻土蠕变的试验研究进行介绍。分经验模型、流变模型和一般的应力-应变-时间模型对冻土蠕变本构模型研究进行分析总结。从试验研究和本构模型研究两方面介绍冻土的动蠕变研究进展。同时,也介绍了冻土与桩基之间冻结强度的研究。目前,冻土蠕变研究大都集中在短期冻结强度,尤其缺乏桩土之间蠕变变形及长期强度的相关研究。随着未来冻土区铁路、公路建设以及民用建筑等级的提高,桩基础将越来越多的被应用。为优化冻土区桩基的设计,在当前有必要加强冻土区桩基蠕变特性的研究。
为分析冻土单轴抗压强度、弹性模量和泊松比随温度变化的规律,以及冻土的蠕变规律,开展单轴压缩和单轴蠕变试验,研究袁大滩矿主斜井冻结表土层的物理力学性质。试验结果表明,单轴抗压强度和弹性模量随冻土温度的降低而增加,泊松比随冻土温度的降低而减小,冻土的蠕变应变较小,但当应力水平较高时,冻结黏土会发生蠕变断裂。
冰作为冻土的基本组成部分,对冻土蠕变的加速蠕变阶段有重要影响。温度通过影响冻土中冰的冻结与融化过程,及其黏塑性流动,引起冻土结构的强化与弱化,从而成为了决定冻土蠕变力学行为的关键因素之一。同时,外部应力也造成冻土的强化与弱化,影响着冻土的蠕变。通过引入硬化因子与损伤因子来考虑温度、应力造成的冻土材料强化与弱化。硬化因子H代表了蠕变过程中强化效应的大小,而损伤因子D则代表了由弱化效应造成的冻土材料相关参数的折减比例,进而提出了适用于冻土的改进西原蠕变本构模型。该模型预测值与试验数据的比较表明:改进的模型不仅能较好地描述初始蠕变阶段、稳定蠕变阶段,而且相比于传统模型,能更好地描述冻土加速蠕变阶段,具有合理性与一定的实用性。