为提升寒区露天矿滑坡等地质灾害防控能力,依托某寒区露天矿高陡边坡工程,在30次冻融循环试验(温度范围为-30~20℃)的基础上,开展不同裂隙倾角(0、25、50、75°)边坡潜滑区岩体的单轴变上限循环加卸载试验及同步声发射监测试验,从宏/细观尺度探究边坡岩体在冻-动(冻融循环与循环加卸载)联合作用下的损伤劣化特性与力学演化特征,并进一步研究裂隙岩体裂纹起裂、扩展以及破坏模式。结果表明:随裂隙倾角增大,裂隙岩体冻融损伤作用逐渐降低,但抗压强度和弹性模量呈线性趋势增长,疲劳抗性的最大变形为0.558 3%(75°);相较于普通单轴加载,循环加卸载条件下裂隙岩体抗压强度最大降低5.6 MPa;不同岩样费利西蒂比(Felicity比)随加载循环等级增加而减小,在最终破坏阶段均低于0.7;随加载循环等级增加,累计耗散能的增幅随倾角增大而减小;岩样以张拉破坏为主,但倾角超过25°时,张拉和混合破坏有向剪切破坏转变的趋势。
为提升寒区露天矿滑坡等地质灾害防控能力,依托某寒区露天矿高陡边坡工程,在30次冻融循环试验(温度范围为-30~20℃)的基础上,开展不同裂隙倾角(0、25、50、75°)边坡潜滑区岩体的单轴变上限循环加卸载试验及同步声发射监测试验,从宏/细观尺度探究边坡岩体在冻-动(冻融循环与循环加卸载)联合作用下的损伤劣化特性与力学演化特征,并进一步研究裂隙岩体裂纹起裂、扩展以及破坏模式。结果表明:随裂隙倾角增大,裂隙岩体冻融损伤作用逐渐降低,但抗压强度和弹性模量呈线性趋势增长,疲劳抗性的最大变形为0.558 3%(75°);相较于普通单轴加载,循环加卸载条件下裂隙岩体抗压强度最大降低5.6 MPa;不同岩样费利西蒂比(Felicity比)随加载循环等级增加而减小,在最终破坏阶段均低于0.7;随加载循环等级增加,累计耗散能的增幅随倾角增大而减小;岩样以张拉破坏为主,但倾角超过25°时,张拉和混合破坏有向剪切破坏转变的趋势。
为提升寒区露天矿滑坡等地质灾害防控能力,依托某寒区露天矿高陡边坡工程,在30次冻融循环试验(温度范围为-30~20℃)的基础上,开展不同裂隙倾角(0、25、50、75°)边坡潜滑区岩体的单轴变上限循环加卸载试验及同步声发射监测试验,从宏/细观尺度探究边坡岩体在冻-动(冻融循环与循环加卸载)联合作用下的损伤劣化特性与力学演化特征,并进一步研究裂隙岩体裂纹起裂、扩展以及破坏模式。结果表明:随裂隙倾角增大,裂隙岩体冻融损伤作用逐渐降低,但抗压强度和弹性模量呈线性趋势增长,疲劳抗性的最大变形为0.558 3%(75°);相较于普通单轴加载,循环加卸载条件下裂隙岩体抗压强度最大降低5.6 MPa;不同岩样费利西蒂比(Felicity比)随加载循环等级增加而减小,在最终破坏阶段均低于0.7;随加载循环等级增加,累计耗散能的增幅随倾角增大而减小;岩样以张拉破坏为主,但倾角超过25°时,张拉和混合破坏有向剪切破坏转变的趋势。
随着寒区工程向更高海拔、高纬度扩展,裂隙岩体在低温环境下的力学响应问题日益凸显。现有冻土力学理论难以有效指导寒区岩体工程实践,亟需深化对裂隙岩体冻胀机制的认识。通过理论研究、室内与现场试验、数值模拟等方法,系统探究低温及冻融循环作用下裂隙岩体冻胀力的形成机制与破坏规律。研究表明:裂隙岩体冻胀机制包括体积膨胀、分凝冰以及混合冻胀理论,其中,半椭圆形开放裂隙混合冻胀模型在描述裂隙岩体冻胀机制方面更为合理。裂隙岩体冻胀是一个考虑水分迁移、多相介质热传导、裂纹扩展的温度–渗流–应力耦合问题,裂隙结构、饱和度、水分迁移、密闭性、冻结模式、冰–岩界面作用、水–冰相变等对裂隙岩体冻胀力演化及损伤具有重要影响。冻胀力驱动裂隙扩展是裂隙岩体损伤的主要方式,受裂隙和岩体特征显著影响。此外,室内和现场试验的冻胀行为存在差异,特别是在冻融循环、开裂温度和补水条件方面。未来应从微、细观机制入手,辅助室内与现场试验,探究水分迁移和冰岩作用机制,以求解冻胀力为初步目标,结合数值计算方法,探究裂隙网络演化,并结合人工智能与大数据分析,尝试建立裂隙岩体冻胀破坏预测的自适应监测与决策支持系统。
随着寒区工程向更高海拔、高纬度扩展,裂隙岩体在低温环境下的力学响应问题日益凸显。现有冻土力学理论难以有效指导寒区岩体工程实践,亟需深化对裂隙岩体冻胀机制的认识。通过理论研究、室内与现场试验、数值模拟等方法,系统探究低温及冻融循环作用下裂隙岩体冻胀力的形成机制与破坏规律。研究表明:裂隙岩体冻胀机制包括体积膨胀、分凝冰以及混合冻胀理论,其中,半椭圆形开放裂隙混合冻胀模型在描述裂隙岩体冻胀机制方面更为合理。裂隙岩体冻胀是一个考虑水分迁移、多相介质热传导、裂纹扩展的温度–渗流–应力耦合问题,裂隙结构、饱和度、水分迁移、密闭性、冻结模式、冰–岩界面作用、水–冰相变等对裂隙岩体冻胀力演化及损伤具有重要影响。冻胀力驱动裂隙扩展是裂隙岩体损伤的主要方式,受裂隙和岩体特征显著影响。此外,室内和现场试验的冻胀行为存在差异,特别是在冻融循环、开裂温度和补水条件方面。未来应从微、细观机制入手,辅助室内与现场试验,探究水分迁移和冰岩作用机制,以求解冻胀力为初步目标,结合数值计算方法,探究裂隙网络演化,并结合人工智能与大数据分析,尝试建立裂隙岩体冻胀破坏预测的自适应监测与决策支持系统。
随着寒区工程向更高海拔、高纬度扩展,裂隙岩体在低温环境下的力学响应问题日益凸显。现有冻土力学理论难以有效指导寒区岩体工程实践,亟需深化对裂隙岩体冻胀机制的认识。通过理论研究、室内与现场试验、数值模拟等方法,系统探究低温及冻融循环作用下裂隙岩体冻胀力的形成机制与破坏规律。研究表明:裂隙岩体冻胀机制包括体积膨胀、分凝冰以及混合冻胀理论,其中,半椭圆形开放裂隙混合冻胀模型在描述裂隙岩体冻胀机制方面更为合理。裂隙岩体冻胀是一个考虑水分迁移、多相介质热传导、裂纹扩展的温度–渗流–应力耦合问题,裂隙结构、饱和度、水分迁移、密闭性、冻结模式、冰–岩界面作用、水–冰相变等对裂隙岩体冻胀力演化及损伤具有重要影响。冻胀力驱动裂隙扩展是裂隙岩体损伤的主要方式,受裂隙和岩体特征显著影响。此外,室内和现场试验的冻胀行为存在差异,特别是在冻融循环、开裂温度和补水条件方面。未来应从微、细观机制入手,辅助室内与现场试验,探究水分迁移和冰岩作用机制,以求解冻胀力为初步目标,结合数值计算方法,探究裂隙网络演化,并结合人工智能与大数据分析,尝试建立裂隙岩体冻胀破坏预测的自适应监测与决策支持系统。
裂隙使得岩体和土体的水热力特性明显不同,现有冻土理论难以解决低温岩体工程的冻融灾害问题。冻融过程中裂隙水的迁移机制、裂隙部位的传热机制、裂隙参数的动态演化以及非均质岩体水–热–力多场耦合作用是研究低温岩体冻融灾害的关键。从低温岩体水分迁移特性、热质传输特性、物理力学特性和水–热–力耦合特性4个方面分析了含相变低温岩体的研究进展。国内外在低温岩体方面的研究成果丰硕,但未充分考虑裂隙导致的非均质性和相变条件下裂隙部位水热力性能的特殊性;尚未探明低温岩体裂隙部位的水热迁移机制,缺乏真正意义上的用于研究低温裂隙岩体水热力特性的大型试验设备;虽开展了冻胀裂隙扩展研究,但尚未建立起考虑冻融全过程以及冻融循环作用的裂隙动态演化方程;低温岩体冻融灾害涉及微观层面的水热迁移、细观层面的裂隙演化和宏观层面的变形破坏,目前尚未建立起综合微观–细观–宏观成果的水–热–力耦合模型。要探明低温岩体的水热力特性,应以冰水相变为切入点,紧扣裂隙引起的非连续特性,研发大型试验设备、探明裂隙水热迁移机制、推导裂隙演化方程、构建水–热–力耦合模型,开发数值模拟程序,最终实现对低温岩体冻融灾害的仿真模拟研究。
裂隙使得岩体和土体的水热力特性明显不同,现有冻土理论难以解决低温岩体工程的冻融灾害问题。冻融过程中裂隙水的迁移机制、裂隙部位的传热机制、裂隙参数的动态演化以及非均质岩体水–热–力多场耦合作用是研究低温岩体冻融灾害的关键。从低温岩体水分迁移特性、热质传输特性、物理力学特性和水–热–力耦合特性4个方面分析了含相变低温岩体的研究进展。国内外在低温岩体方面的研究成果丰硕,但未充分考虑裂隙导致的非均质性和相变条件下裂隙部位水热力性能的特殊性;尚未探明低温岩体裂隙部位的水热迁移机制,缺乏真正意义上的用于研究低温裂隙岩体水热力特性的大型试验设备;虽开展了冻胀裂隙扩展研究,但尚未建立起考虑冻融全过程以及冻融循环作用的裂隙动态演化方程;低温岩体冻融灾害涉及微观层面的水热迁移、细观层面的裂隙演化和宏观层面的变形破坏,目前尚未建立起综合微观–细观–宏观成果的水–热–力耦合模型。要探明低温岩体的水热力特性,应以冰水相变为切入点,紧扣裂隙引起的非连续特性,研发大型试验设备、探明裂隙水热迁移机制、推导裂隙演化方程、构建水–热–力耦合模型,开发数值模拟程序,最终实现对低温岩体冻融灾害的仿真模拟研究。
裂隙使得岩体和土体的水热力特性明显不同,现有冻土理论难以解决低温岩体工程的冻融灾害问题。冻融过程中裂隙水的迁移机制、裂隙部位的传热机制、裂隙参数的动态演化以及非均质岩体水–热–力多场耦合作用是研究低温岩体冻融灾害的关键。从低温岩体水分迁移特性、热质传输特性、物理力学特性和水–热–力耦合特性4个方面分析了含相变低温岩体的研究进展。国内外在低温岩体方面的研究成果丰硕,但未充分考虑裂隙导致的非均质性和相变条件下裂隙部位水热力性能的特殊性;尚未探明低温岩体裂隙部位的水热迁移机制,缺乏真正意义上的用于研究低温裂隙岩体水热力特性的大型试验设备;虽开展了冻胀裂隙扩展研究,但尚未建立起考虑冻融全过程以及冻融循环作用的裂隙动态演化方程;低温岩体冻融灾害涉及微观层面的水热迁移、细观层面的裂隙演化和宏观层面的变形破坏,目前尚未建立起综合微观–细观–宏观成果的水–热–力耦合模型。要探明低温岩体的水热力特性,应以冰水相变为切入点,紧扣裂隙引起的非连续特性,研发大型试验设备、探明裂隙水热迁移机制、推导裂隙演化方程、构建水–热–力耦合模型,开发数值模拟程序,最终实现对低温岩体冻融灾害的仿真模拟研究。
我国露天矿岩质边坡规模大、数量多,易受到复杂地质地形、自然及工程扰动等多因素影响而导致滑坡灾害频发,特别是我国西北地区,复杂地形与地质构造、恶劣的气候及环境、长期的工程扰动等,致使滑坡灾害频发,给人民生命与财产安全带来严重威胁。针对以上问题,从露天矿岩质边坡特征岩体宏细观损伤演化视角出发,采用工程现场调研、理论分析、室内试验研究等多方位研究手段,综合了岩石力学、土力学等理论和方法,以新疆寒区某露天矿高陡岩质边坡为研究对象,根据实际工程地质环境特征,开展潜滑区岩体冻融损伤试验、裂隙岩体冻胀力演化试验、单轴压缩试验研究,探析不同倾角(0°、25°、50°、75°)裂隙岩体在不同冻融循环条件下的质量损失、波速衰减以及冻胀力演化特征,揭示裂隙岩体在不同载荷条件下的强度时效特征,以及冻融循环条件下力学特性演化规律。在此基础上,结合声发射裂隙场监测试验研究,阐明边坡岩体最终破裂模式以及在变形及破坏过程中的裂纹形态与扩展宏细观机理。结果表明:在冻融循环作用下(0、10、20、30次),岩体饱和质量呈先增后减、纵波波速呈减速衰减趋势;冻胀力演化分为孕育段、起胀段、稳定段、二次起胀段、消融段5个阶段,且...