共检索到 123

极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)因其成像不受环境、时间和气候影响的优势而备受冰川识别领域研究人员的关注。然而,现有的研究并不能充分挖掘双极化SAR影像中的冰川散射特征。针对这一问题,提出了一个基于双极化Sentinel-1 A数据的冰川分类网络S1-UNet,利用双极化SAR数据中的散射特性,实现了对冰川区域的自动提取。引入了注意力特征融合模块增强图像的低级特征与高级特征之间的关联性;采用了改进的空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块获取图像不同尺度的散射特征信息;实验结果表明,与其他语义分割和冰川识别网络相比,S1-UNet模型的性能最好,交并比、精确率分别为94.57%、97.82%,召回率达到96.79%。

期刊论文 2025-06-20

极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)因其成像不受环境、时间和气候影响的优势而备受冰川识别领域研究人员的关注。然而,现有的研究并不能充分挖掘双极化SAR影像中的冰川散射特征。针对这一问题,提出了一个基于双极化Sentinel-1 A数据的冰川分类网络S1-UNet,利用双极化SAR数据中的散射特性,实现了对冰川区域的自动提取。引入了注意力特征融合模块增强图像的低级特征与高级特征之间的关联性;采用了改进的空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块获取图像不同尺度的散射特征信息;实验结果表明,与其他语义分割和冰川识别网络相比,S1-UNet模型的性能最好,交并比、精确率分别为94.57%、97.82%,召回率达到96.79%。

期刊论文 2025-06-20

极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)因其成像不受环境、时间和气候影响的优势而备受冰川识别领域研究人员的关注。然而,现有的研究并不能充分挖掘双极化SAR影像中的冰川散射特征。针对这一问题,提出了一个基于双极化Sentinel-1 A数据的冰川分类网络S1-UNet,利用双极化SAR数据中的散射特性,实现了对冰川区域的自动提取。引入了注意力特征融合模块增强图像的低级特征与高级特征之间的关联性;采用了改进的空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块获取图像不同尺度的散射特征信息;实验结果表明,与其他语义分割和冰川识别网络相比,S1-UNet模型的性能最好,交并比、精确率分别为94.57%、97.82%,召回率达到96.79%。

期刊论文 2025-06-20

极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)因其成像不受环境、时间和气候影响的优势而备受冰川识别领域研究人员的关注。然而,现有的研究并不能充分挖掘双极化SAR影像中的冰川散射特征。针对这一问题,提出了一个基于双极化Sentinel-1 A数据的冰川分类网络S1-UNet,利用双极化SAR数据中的散射特性,实现了对冰川区域的自动提取。引入了注意力特征融合模块增强图像的低级特征与高级特征之间的关联性;采用了改进的空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块获取图像不同尺度的散射特征信息;实验结果表明,与其他语义分割和冰川识别网络相比,S1-UNet模型的性能最好,交并比、精确率分别为94.57%、97.82%,召回率达到96.79%。

期刊论文 2025-06-20

极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)因其成像不受环境、时间和气候影响的优势而备受冰川识别领域研究人员的关注。然而,现有的研究并不能充分挖掘双极化SAR影像中的冰川散射特征。针对这一问题,提出了一个基于双极化Sentinel-1 A数据的冰川分类网络S1-UNet,利用双极化SAR数据中的散射特性,实现了对冰川区域的自动提取。引入了注意力特征融合模块增强图像的低级特征与高级特征之间的关联性;采用了改进的空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块获取图像不同尺度的散射特征信息;实验结果表明,与其他语义分割和冰川识别网络相比,S1-UNet模型的性能最好,交并比、精确率分别为94.57%、97.82%,召回率达到96.79%。

期刊论文 2025-06-20

极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)因其成像不受环境、时间和气候影响的优势而备受冰川识别领域研究人员的关注。然而,现有的研究并不能充分挖掘双极化SAR影像中的冰川散射特征。针对这一问题,提出了一个基于双极化Sentinel-1 A数据的冰川分类网络S1-UNet,利用双极化SAR数据中的散射特性,实现了对冰川区域的自动提取。引入了注意力特征融合模块增强图像的低级特征与高级特征之间的关联性;采用了改进的空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块获取图像不同尺度的散射特征信息;实验结果表明,与其他语义分割和冰川识别网络相比,S1-UNet模型的性能最好,交并比、精确率分别为94.57%、97.82%,召回率达到96.79%。

期刊论文 2025-06-20

我国高速公路缺乏专业的路面状态检测设备,冬季难以针对冰雪路面进行实时监测和高效预警。对此,提出一种基于交通摄像头的高速公路积雪智能识别方法。利用摄像头采集高速公路视频图像,融合卷积神经网络和注意力机制建立图像分类模型,实现无积雪、应急车道积雪和行车道积雪三种路面状态的识别。实验结果表明,模型在白天场景测试集上识别准确率为98.3%,夜间场景测试集上识别率准确为85.9%。该方法能够充分利用现有交通视频监控设备,以较低成本实现冬季高速公路积雪状况的高密度、大范围监测。

期刊论文 2025-04-01 DOI: 10.13274/j.cnki.hdzj.2025.03.006

我国高速公路缺乏专业的路面状态检测设备,冬季难以针对冰雪路面进行实时监测和高效预警。对此,提出一种基于交通摄像头的高速公路积雪智能识别方法。利用摄像头采集高速公路视频图像,融合卷积神经网络和注意力机制建立图像分类模型,实现无积雪、应急车道积雪和行车道积雪三种路面状态的识别。实验结果表明,模型在白天场景测试集上识别准确率为98.3%,夜间场景测试集上识别率准确为85.9%。该方法能够充分利用现有交通视频监控设备,以较低成本实现冬季高速公路积雪状况的高密度、大范围监测。

期刊论文 2025-04-01 DOI: 10.13274/j.cnki.hdzj.2025.03.006

我国高速公路缺乏专业的路面状态检测设备,冬季难以针对冰雪路面进行实时监测和高效预警。对此,提出一种基于交通摄像头的高速公路积雪智能识别方法。利用摄像头采集高速公路视频图像,融合卷积神经网络和注意力机制建立图像分类模型,实现无积雪、应急车道积雪和行车道积雪三种路面状态的识别。实验结果表明,模型在白天场景测试集上识别准确率为98.3%,夜间场景测试集上识别率准确为85.9%。该方法能够充分利用现有交通视频监控设备,以较低成本实现冬季高速公路积雪状况的高密度、大范围监测。

期刊论文 2025-04-01 DOI: 10.13274/j.cnki.hdzj.2025.03.006

我国高速公路缺乏专业的路面状态检测设备,冬季难以针对冰雪路面进行实时监测和高效预警。对此,提出一种基于交通摄像头的高速公路积雪智能识别方法。利用摄像头采集高速公路视频图像,融合卷积神经网络和注意力机制建立图像分类模型,实现无积雪、应急车道积雪和行车道积雪三种路面状态的识别。实验结果表明,模型在白天场景测试集上识别准确率为98.3%,夜间场景测试集上识别率准确为85.9%。该方法能够充分利用现有交通视频监控设备,以较低成本实现冬季高速公路积雪状况的高密度、大范围监测。

期刊论文 2025-04-01 DOI: 10.13274/j.cnki.hdzj.2025.03.006
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共123条,13页