在光学卫星影像中,表碛覆盖型冰川的光谱和山地、岩石极为相近,导致冰川与周围地形难以有效区分,使得冰川的自动化分割变得困难。针对这一问题,提出一种基于光学卫星图像和数字高程模型(DEM)的双输入图像语义分割网络(DENet)。该网络采用双编码框架,结合多尺度特征提取和注意力机制,通过整合来自不同数据的特征信息,获取DEM地貌参数,以解决表碛覆盖型冰川中同谱异物导致的源头区域误分割问题。首先通过多尺度可分离卷积注意力模块和多核注意力池化模块对卫星图像和DEM分别进行特征提取,然后将获取到的2个特征图进行融合。多尺度特征提取模块可用于捕捉和融合冰川图像的多个尺度信息,以产生更丰富和全面的特征表示。同时,引入注意力机制可以对每个通道和空间位置分配不同的权重,关注不同尺度上的特定区域,使模型能够聚焦于更重要的信息,减少多余特征的影响。实验结果表明,该网络的平均交并比(IoU)达到94.6%,比U-Net、DeepLabv3+网络分别提高4.53和3.38百分点,其能提升山地冰川区域的分割准确率。
由于山体坡度、光照角度、传感器成像角度等因素,遥感图像中的山体阴影影响了冰川识别的精度.现有方法一般是先去除阴影再进行冰川识别,既繁琐又可能破坏图像的光谱信息.本文在U-Net框架中集成金字塔池化模块以增强多尺度特征提取能力,提出了一种U-PSP-Net结构的卷积神经网络,可以实现阴影区冰川识别.在自制的含阴影冰川数据集上进行验证,与PSP-Net、SegNet和U-Net的性能比较表明,提出的U-PSP-Net的平均像素精度为95.84%,平均交并比(IoU)为92.79%.与U-Net相比,分别提升了0.61%和0.92%;与PSP-Net和SegNet相比分别提高了1.41%、2.54%和2.85%、2.86%.以上结果证明了神经网络结构在含阴影遥感影像中识别冰川的可行性和有效性.
针对冰川提取存在云阴影、山体阴影、结冰湖泊等同物异谱、同谱异物导致难以有效区分的问题,设计了一种用于冰川提取的上下文感知深度学习语义分割网络。首先引入resnet50作为基准编码网络,以实现冰川特征提取的精度和效率平衡,其次针对现有语义分割网络存在上下文信息学习不足方面,设计了包括空洞卷积组块和最大池化组块的上下文信息提取层,以便更好地提取冰川的上下文信息。选择多景样本数据和验证数据的多源遥感影像进行试验,与现有基于特征指数的冰川提取方法、其他深度学习语义分割网络方法进行定性和定量对比,结果表明本文网络方法在结冰湖面等误提取,阴影的漏提取,以及提取结果完整性等方面,具有较好的效果,验证了本文方法的有效性与稳健性。