共检索到 28

基于Realizable k-epsilon湍流模型和离散相模型,对100 m/s(高铁速度360 km/h)运行车速条件下,高速列车转向架区域空气流场变化、积雪问题和防积雪优化进行数值计算和分析。研究结果表明:转向架区域内存在大量低速涡流,这些低速涡流周围各部件上容易形成积雪;通过设计并加装导流板和扰流板,能够抑制转向架下方气流的上扬和回流趋势,显著减少转向架积雪量;通过改进结构参数,发现导流板下斜距离为30 mm时,防雪性能最好,其可使转向架积雪量减少95.50%。

期刊论文 2024-12-27 DOI: 10.19344/j.cnki.issn1671-5276.2024.06.038

基于Realizable k-epsilon湍流模型和离散相模型,对100 m/s(高铁速度360 km/h)运行车速条件下,高速列车转向架区域空气流场变化、积雪问题和防积雪优化进行数值计算和分析。研究结果表明:转向架区域内存在大量低速涡流,这些低速涡流周围各部件上容易形成积雪;通过设计并加装导流板和扰流板,能够抑制转向架下方气流的上扬和回流趋势,显著减少转向架积雪量;通过改进结构参数,发现导流板下斜距离为30 mm时,防雪性能最好,其可使转向架积雪量减少95.50%。

期刊论文 2024-12-27 DOI: 10.19344/j.cnki.issn1671-5276.2024.06.038

当高速列车在高寒雨雪地区行驶时,转向架区域容易形成积雪,对高速列车的安全行驶造成威胁。在积雪轨道上行驶的高速列车,其转向架区域积雪中雪粒来源于地面积雪,因此基于壁面切应力,建立风致积雪雪粒运动模型,研究地面积雪中雪粒在列车风作用下的运动情况。采用欧拉-拉格朗日方法,基于雪粒沉积准则,建立转向架区域雪粒沉积边界模型,研究风致雪粒运动情况下转向架区域积雪分布。研究结果表明:高速气流在转向架正下方区域出现高速上扬的现象;转向架区域的车体板件、构架和轴箱等为主要的积雪部位;转向架区域雪粒沉积数量与转向架的位置、雪粒的密度和直径及壁面条件有关。

期刊论文 2024-10-23 DOI: 10.19344/j.cnki.issn1671-5276.2024.05.001

当高速列车在高寒雨雪地区行驶时,转向架区域容易形成积雪,对高速列车的安全行驶造成威胁。在积雪轨道上行驶的高速列车,其转向架区域积雪中雪粒来源于地面积雪,因此基于壁面切应力,建立风致积雪雪粒运动模型,研究地面积雪中雪粒在列车风作用下的运动情况。采用欧拉-拉格朗日方法,基于雪粒沉积准则,建立转向架区域雪粒沉积边界模型,研究风致雪粒运动情况下转向架区域积雪分布。研究结果表明:高速气流在转向架正下方区域出现高速上扬的现象;转向架区域的车体板件、构架和轴箱等为主要的积雪部位;转向架区域雪粒沉积数量与转向架的位置、雪粒的密度和直径及壁面条件有关。

期刊论文 2024-10-23 DOI: 10.19344/j.cnki.issn1671-5276.2024.05.001

采用基于Realizable k-ε模型的非定常雷诺时均方法(URANS)和离散相模型(DPM)研究高速列车底部转向架及其腔体区域的严重积雪问题。基于高速列车底部风雪两相流时空运动演化特性进行深入分析,并对转向架区域积雪成因进行归纳总结。研究结果表明:大量雪粒跟随转向架区域剪切层下方的高速气流流出转向架区域,部分雪粒在转向架中间区域和后端板附近跟随上扬气流向上扬起并撞击黏附在转向架和后端板迎风面,并在转向架底面形成大量积雪;仅有少量雪粒在后侧电机和后端板附近向上爬升至转向架上方,在后端板顶部相遇汇聚后在低速气流驱动下游离折返至前端板附近并重新汇入车底流场,悬浮雪粒在重力作用下沉积在转向架顶面,并在转向架上表面形成少量积雪。

期刊论文 2024-08-01

采用基于Realizable k-ε模型的非定常雷诺时均方法(URANS)和离散相模型(DPM)研究高速列车底部转向架及其腔体区域的严重积雪问题。基于高速列车底部风雪两相流时空运动演化特性进行深入分析,并对转向架区域积雪成因进行归纳总结。研究结果表明:大量雪粒跟随转向架区域剪切层下方的高速气流流出转向架区域,部分雪粒在转向架中间区域和后端板附近跟随上扬气流向上扬起并撞击黏附在转向架和后端板迎风面,并在转向架底面形成大量积雪;仅有少量雪粒在后侧电机和后端板附近向上爬升至转向架上方,在后端板顶部相遇汇聚后在低速气流驱动下游离折返至前端板附近并重新汇入车底流场,悬浮雪粒在重力作用下沉积在转向架顶面,并在转向架上表面形成少量积雪。

期刊论文 2024-08-01

采用基于Realizable k-ε湍流模型的非定常雷诺时均方法(URANS)和离散相模型(DPM)探究运动边界对高速列车底部风雪运动规律及转向架区域积雪分布的影响。研究结果表明:地面的运动有效缓解了转向架底部气流的流向动能衰弱效应,显著增加了转向架2区域的流向速度分布,并影响了雪粒垂向速度分布,致使转向架1区域的表面积雪质量降低33.6%,转向架2区域的表面积雪质量增加20.1%;列车轮对的旋转未影响转向架底面积雪分布,但轮对旋转使后端板周围雪粒垂向速度大幅增加,进而增加了转向架上表面的积雪分布;相较于旋转轮对,在轮对静止条件下,牵引电机、齿轮箱、构架和后端板表面积雪质量分别降低1.5%、2.9%、3.4%和6.4%,转向架2区域的表面积雪总质量整体降低3.2%,因此,在高速列车转向架区域积雪的数值仿真和风洞试验研究中,要尽可能地实现转向架、地面和轮对之间的相对运动。

期刊论文 2024-06-14

采用基于Realizable k-ε湍流模型的非定常雷诺时均方法(URANS)和离散相模型(DPM)探究运动边界对高速列车底部风雪运动规律及转向架区域积雪分布的影响。研究结果表明:地面的运动有效缓解了转向架底部气流的流向动能衰弱效应,显著增加了转向架2区域的流向速度分布,并影响了雪粒垂向速度分布,致使转向架1区域的表面积雪质量降低33.6%,转向架2区域的表面积雪质量增加20.1%;列车轮对的旋转未影响转向架底面积雪分布,但轮对旋转使后端板周围雪粒垂向速度大幅增加,进而增加了转向架上表面的积雪分布;相较于旋转轮对,在轮对静止条件下,牵引电机、齿轮箱、构架和后端板表面积雪质量分别降低1.5%、2.9%、3.4%和6.4%,转向架2区域的表面积雪总质量整体降低3.2%,因此,在高速列车转向架区域积雪的数值仿真和风洞试验研究中,要尽可能地实现转向架、地面和轮对之间的相对运动。

期刊论文 2024-06-14

风雪严寒环境导致转向架区域冰雪大量堆积,严重威胁高速列车行驶安全.为分析风雪严寒天气下转向架的结冰特性,采用包含简化车体和动力转向架的缩比模型,在中南大学轨道车辆积雪结冰风洞开展了高速列车转向架结冰实验研究.采用喷水系统模拟制动夹钳周围融水产生的喷水现象,以再现轮对甩水致转向架结冰过程.研究转向架区域动态结冰过程和整体结冰分布特性、各关键区域的结冰质量占比权重以及转向架结冰速率模型.研究结果表明:轮对甩出的水滴受紊乱流场作用扩散至转向架各个区域,在低温下结冰并随时间迅速发展,直至整个转向架区域被冰层覆盖;对于转向架舱,其后端板结冰严重,结冰质量占转向架舱结冰总质量的28%;对于转向架,构架和制动夹钳区域结冰分布最多,分别占转向架结冰总质量的34%和22%,空气弹簧、横梁和纵梁结冰分布较少,转向架呈现出底部结冰量大、结冰形状复杂的特性.随着结冰时间增加,各区域结冰速率不同,转向架舱、转向架的结冰总质量与结冰时间呈一次函数关系.研究获得的转向架结冰特性和结冰速率模型,可对一定运行时间内转向架结冰质量快速预测提供参考依据,对风雪环境下高速列车安全运行和转向架防除冰具有重要指导意义.

期刊论文 2024-03-25 DOI: 10.16339/j.cnki.hdxbzkb.2024151

风雪严寒环境导致转向架区域冰雪大量堆积,严重威胁高速列车行驶安全.为分析风雪严寒天气下转向架的结冰特性,采用包含简化车体和动力转向架的缩比模型,在中南大学轨道车辆积雪结冰风洞开展了高速列车转向架结冰实验研究.采用喷水系统模拟制动夹钳周围融水产生的喷水现象,以再现轮对甩水致转向架结冰过程.研究转向架区域动态结冰过程和整体结冰分布特性、各关键区域的结冰质量占比权重以及转向架结冰速率模型.研究结果表明:轮对甩出的水滴受紊乱流场作用扩散至转向架各个区域,在低温下结冰并随时间迅速发展,直至整个转向架区域被冰层覆盖;对于转向架舱,其后端板结冰严重,结冰质量占转向架舱结冰总质量的28%;对于转向架,构架和制动夹钳区域结冰分布最多,分别占转向架结冰总质量的34%和22%,空气弹簧、横梁和纵梁结冰分布较少,转向架呈现出底部结冰量大、结冰形状复杂的特性.随着结冰时间增加,各区域结冰速率不同,转向架舱、转向架的结冰总质量与结冰时间呈一次函数关系.研究获得的转向架结冰特性和结冰速率模型,可对一定运行时间内转向架结冰质量快速预测提供参考依据,对风雪环境下高速列车安全运行和转向架防除冰具有重要指导意义.

期刊论文 2024-03-25 DOI: 10.16339/j.cnki.hdxbzkb.2024151
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共28条,3页