明确不同野火数据产品的一致性与不确定性是开展产品分析应用的前提与基础。FireCCI51和MOSEV是国际上广泛使用的两套野火数据产品,泛北极多年冻土区是全球野火发生的集中区与重要碳库,分析该区野火数据产品的一致性可对未来提升野火产品的数据精度、降低泛北极碳通量估算等具有重要意义。本研究运用空间分析方法,从燃烧面积与燃烧区空间位置等方面,识别了FireCCI51和MOSEV两种数据产品在泛北极多年冻土区的一致性,进而分析了两者一致区与不一致区的地理环境特征。结果表明:(1)2001~2019年FireCCI51产品的燃烧面积均大于MOSEV,且两者燃烧面积的百分比差异在7%~60%无规律波动;(2)两种产品识别的燃烧区的空间分布一致性介于27.68%~47.14%,一致区主要分布在燃烧区集中分布的地区,例如加拿大中部地区、俄罗斯中、东西伯利亚地区及其南部延伸的大兴安岭地区,不一致区除了分布在这些地区之外,还在俄罗斯南部和西西伯利亚地区分布较多;(3)高程、气候类型和植被类型均对两套数据产品的一致区分布造成一定影响。在较低海拔和常湿冷温气候地区两种产品的一致区面积占比较多,在相对较高海拔...
明确不同野火数据产品的一致性与不确定性是开展产品分析应用的前提与基础。FireCCI51和MOSEV是国际上广泛使用的两套野火数据产品,泛北极多年冻土区是全球野火发生的集中区与重要碳库,分析该区野火数据产品的一致性可对未来提升野火产品的数据精度、降低泛北极碳通量估算等具有重要意义。本研究运用空间分析方法,从燃烧面积与燃烧区空间位置等方面,识别了FireCCI51和MOSEV两种数据产品在泛北极多年冻土区的一致性,进而分析了两者一致区与不一致区的地理环境特征。结果表明:(1)2001~2019年FireCCI51产品的燃烧面积均大于MOSEV,且两者燃烧面积的百分比差异在7%~60%无规律波动;(2)两种产品识别的燃烧区的空间分布一致性介于27.68%~47.14%,一致区主要分布在燃烧区集中分布的地区,例如加拿大中部地区、俄罗斯中、东西伯利亚地区及其南部延伸的大兴安岭地区,不一致区除了分布在这些地区之外,还在俄罗斯南部和西西伯利亚地区分布较多;(3)高程、气候类型和植被类型均对两套数据产品的一致区分布造成一定影响。在较低海拔和常湿冷温气候地区两种产品的一致区面积占比较多,在相对较高海拔...
明确不同野火数据产品的一致性与不确定性是开展产品分析应用的前提与基础。FireCCI51和MOSEV是国际上广泛使用的两套野火数据产品,泛北极多年冻土区是全球野火发生的集中区与重要碳库,分析该区野火数据产品的一致性可对未来提升野火产品的数据精度、降低泛北极碳通量估算等具有重要意义。本研究运用空间分析方法,从燃烧面积与燃烧区空间位置等方面,识别了FireCCI51和MOSEV两种数据产品在泛北极多年冻土区的一致性,进而分析了两者一致区与不一致区的地理环境特征。结果表明:(1)2001~2019年FireCCI51产品的燃烧面积均大于MOSEV,且两者燃烧面积的百分比差异在7%~60%无规律波动;(2)两种产品识别的燃烧区的空间分布一致性介于27.68%~47.14%,一致区主要分布在燃烧区集中分布的地区,例如加拿大中部地区、俄罗斯中、东西伯利亚地区及其南部延伸的大兴安岭地区,不一致区除了分布在这些地区之外,还在俄罗斯南部和西西伯利亚地区分布较多;(3)高程、气候类型和植被类型均对两套数据产品的一致区分布造成一定影响。在较低海拔和常湿冷温气候地区两种产品的一致区面积占比较多,在相对较高海拔...
明确不同野火数据产品的一致性与不确定性是开展产品分析应用的前提与基础。FireCCI51和MOSEV是国际上广泛使用的两套野火数据产品,泛北极多年冻土区是全球野火发生的集中区与重要碳库,分析该区野火数据产品的一致性可对未来提升野火产品的数据精度、降低泛北极碳通量估算等具有重要意义。本研究运用空间分析方法,从燃烧面积与燃烧区空间位置等方面,识别了FireCCI51和MOSEV两种数据产品在泛北极多年冻土区的一致性,进而分析了两者一致区与不一致区的地理环境特征。结果表明:(1)2001~2019年FireCCI51产品的燃烧面积均大于MOSEV,且两者燃烧面积的百分比差异在7%~60%无规律波动;(2)两种产品识别的燃烧区的空间分布一致性介于27.68%~47.14%,一致区主要分布在燃烧区集中分布的地区,例如加拿大中部地区、俄罗斯中、东西伯利亚地区及其南部延伸的大兴安岭地区,不一致区除了分布在这些地区之外,还在俄罗斯南部和西西伯利亚地区分布较多;(3)高程、气候类型和植被类型均对两套数据产品的一致区分布造成一定影响。在较低海拔和常湿冷温气候地区两种产品的一致区面积占比较多,在相对较高海拔...
明确不同野火数据产品的一致性与不确定性是开展产品分析应用的前提与基础。FireCCI51和MOSEV是国际上广泛使用的两套野火数据产品,泛北极多年冻土区是全球野火发生的集中区与重要碳库,分析该区野火数据产品的一致性可对未来提升野火产品的数据精度、降低泛北极碳通量估算等具有重要意义。本研究运用空间分析方法,从燃烧面积与燃烧区空间位置等方面,识别了FireCCI51和MOSEV两种数据产品在泛北极多年冻土区的一致性,进而分析了两者一致区与不一致区的地理环境特征。结果表明:(1)2001~2019年FireCCI51产品的燃烧面积均大于MOSEV,且两者燃烧面积的百分比差异在7%~60%无规律波动;(2)两种产品识别的燃烧区的空间分布一致性介于27.68%~47.14%,一致区主要分布在燃烧区集中分布的地区,例如加拿大中部地区、俄罗斯中、东西伯利亚地区及其南部延伸的大兴安岭地区,不一致区除了分布在这些地区之外,还在俄罗斯南部和西西伯利亚地区分布较多;(3)高程、气候类型和植被类型均对两套数据产品的一致区分布造成一定影响。在较低海拔和常湿冷温气候地区两种产品的一致区面积占比较多,在相对较高海拔...
明确不同野火数据产品的一致性与不确定性是开展产品分析应用的前提与基础。FireCCI51和MOSEV是国际上广泛使用的两套野火数据产品,泛北极多年冻土区是全球野火发生的集中区与重要碳库,分析该区野火数据产品的一致性可对未来提升野火产品的数据精度、降低泛北极碳通量估算等具有重要意义。本研究运用空间分析方法,从燃烧面积与燃烧区空间位置等方面,识别了FireCCI51和MOSEV两种数据产品在泛北极多年冻土区的一致性,进而分析了两者一致区与不一致区的地理环境特征。结果表明:(1)2001~2019年FireCCI51产品的燃烧面积均大于MOSEV,且两者燃烧面积的百分比差异在7%~60%无规律波动;(2)两种产品识别的燃烧区的空间分布一致性介于27.68%~47.14%,一致区主要分布在燃烧区集中分布的地区,例如加拿大中部地区、俄罗斯中、东西伯利亚地区及其南部延伸的大兴安岭地区,不一致区除了分布在这些地区之外,还在俄罗斯南部和西西伯利亚地区分布较多;(3)高程、气候类型和植被类型均对两套数据产品的一致区分布造成一定影响。在较低海拔和常湿冷温气候地区两种产品的一致区面积占比较多,在相对较高海拔...
野火是多年冻土区生态系统的主要扰动形式之一,近年来有逐渐增强的趋势.多年冻土区的野火不仅燃烧地上和地下有机质,还会促进冻土融化,从而向大气中释放大量二氧化碳、甲烷等温室气体,但目前对于北半球高纬度多年冻土区对全球野火燃烧碳排放贡献的认识仍然有限.本研究利用卫星遥感与地面观测资料相结合的野火燃烧碳排放数据,分析了21世纪以来北半球高纬度多年冻土区地上和地下燃料燃烧分别对全球野火燃烧碳排放的贡献及其时空变化特征.研究发现, 2002~2020年期间,多年冻土区生态系统约贡献全球野火燃烧碳排放的11.96%,其中地上燃烧碳排放约贡献全球地上野火燃烧碳排放的3.94%、地下燃烧碳排放约贡献全球地下燃烧碳排放的63.57%.整个北半球高纬度多年冻土区对全球的贡献在7月和8月增加最为显著,而连续冻土区(冻土覆盖范围大于90%的区域)则在6月和7月增加最为显著.北半球高纬度多年冻土区的地上和地下燃烧对全球的野火燃烧排放量贡献都在增加,主要是因为全球的燃烧排放总量在减少,而北半球高纬度多年冻土区的野火燃烧排放量在增加,其中连续冻土区燃烧排放量的增加和对全球贡献的增长最为显著.本研究强调了北半球高纬度多...
野火是多年冻土区生态系统的主要扰动形式之一,近年来有逐渐增强的趋势.多年冻土区的野火不仅燃烧地上和地下有机质,还会促进冻土融化,从而向大气中释放大量二氧化碳、甲烷等温室气体,但目前对于北半球高纬度多年冻土区对全球野火燃烧碳排放贡献的认识仍然有限.本研究利用卫星遥感与地面观测资料相结合的野火燃烧碳排放数据,分析了21世纪以来北半球高纬度多年冻土区地上和地下燃料燃烧分别对全球野火燃烧碳排放的贡献及其时空变化特征.研究发现, 2002~2020年期间,多年冻土区生态系统约贡献全球野火燃烧碳排放的11.96%,其中地上燃烧碳排放约贡献全球地上野火燃烧碳排放的3.94%、地下燃烧碳排放约贡献全球地下燃烧碳排放的63.57%.整个北半球高纬度多年冻土区对全球的贡献在7月和8月增加最为显著,而连续冻土区(冻土覆盖范围大于90%的区域)则在6月和7月增加最为显著.北半球高纬度多年冻土区的地上和地下燃烧对全球的野火燃烧排放量贡献都在增加,主要是因为全球的燃烧排放总量在减少,而北半球高纬度多年冻土区的野火燃烧排放量在增加,其中连续冻土区燃烧排放量的增加和对全球贡献的增长最为显著.本研究强调了北半球高纬度多...
野火是多年冻土区生态系统的主要扰动形式之一,近年来有逐渐增强的趋势.多年冻土区的野火不仅燃烧地上和地下有机质,还会促进冻土融化,从而向大气中释放大量二氧化碳、甲烷等温室气体,但目前对于北半球高纬度多年冻土区对全球野火燃烧碳排放贡献的认识仍然有限.本研究利用卫星遥感与地面观测资料相结合的野火燃烧碳排放数据,分析了21世纪以来北半球高纬度多年冻土区地上和地下燃料燃烧分别对全球野火燃烧碳排放的贡献及其时空变化特征.研究发现, 2002~2020年期间,多年冻土区生态系统约贡献全球野火燃烧碳排放的11.96%,其中地上燃烧碳排放约贡献全球地上野火燃烧碳排放的3.94%、地下燃烧碳排放约贡献全球地下燃烧碳排放的63.57%.整个北半球高纬度多年冻土区对全球的贡献在7月和8月增加最为显著,而连续冻土区(冻土覆盖范围大于90%的区域)则在6月和7月增加最为显著.北半球高纬度多年冻土区的地上和地下燃烧对全球的野火燃烧排放量贡献都在增加,主要是因为全球的燃烧排放总量在减少,而北半球高纬度多年冻土区的野火燃烧排放量在增加,其中连续冻土区燃烧排放量的增加和对全球贡献的增长最为显著.本研究强调了北半球高纬度多...
野火是多年冻土区生态系统的主要扰动形式之一,近年来有逐渐增强的趋势.多年冻土区的野火不仅燃烧地上和地下有机质,还会促进冻土融化,从而向大气中释放大量二氧化碳、甲烷等温室气体,但目前对于北半球高纬度多年冻土区对全球野火燃烧碳排放贡献的认识仍然有限.本研究利用卫星遥感与地面观测资料相结合的野火燃烧碳排放数据,分析了21世纪以来北半球高纬度多年冻土区地上和地下燃料燃烧分别对全球野火燃烧碳排放的贡献及其时空变化特征.研究发现, 2002~2020年期间,多年冻土区生态系统约贡献全球野火燃烧碳排放的11.96%,其中地上燃烧碳排放约贡献全球地上野火燃烧碳排放的3.94%、地下燃烧碳排放约贡献全球地下燃烧碳排放的63.57%.整个北半球高纬度多年冻土区对全球的贡献在7月和8月增加最为显著,而连续冻土区(冻土覆盖范围大于90%的区域)则在6月和7月增加最为显著.北半球高纬度多年冻土区的地上和地下燃烧对全球的野火燃烧排放量贡献都在增加,主要是因为全球的燃烧排放总量在减少,而北半球高纬度多年冻土区的野火燃烧排放量在增加,其中连续冻土区燃烧排放量的增加和对全球贡献的增长最为显著.本研究强调了北半球高纬度多...