目的 为提高高寒地区喷射混凝土耐久性,改善冻融环境下普通喷射混凝土易开裂、抗冻性能差等问题。方法 在喷射混凝土中掺入混合纤维,通过冻融循环试验、超声波检测、压拉性能试验以及气孔结构测试等方法,研究不同冻融循环次数下喷射混杂纤维混凝土的相对纵波波速、相对压拉强度以及试件内部气孔结构变化规律。通过压拉性能损伤量对试件冻融损伤进行多项评价,分析钢纤维和聚丙烯纤维贡献率与喷射混凝土抗压强度之间的关系,并根据钢纤维和聚丙烯纤维贡献率公式建立喷射混凝土冻融损伤模型。结果 与单掺钢纤维和聚丙烯纤维试件相比,混合掺入1%钢纤维、0.1%聚丙烯纤维喷射混凝土试件的抗压强度损失分别降低了7.5%、33.3%,劈裂抗拉强度损失分别降低了15.6%、35.0%。在弦长尺寸0.1mm<1mm处,混合掺入0.1%聚丙烯和1%钢纤维喷射混凝土气泡弦长频率比单掺1%钢纤维喷射混凝土和单掺0.1%聚丙烯喷射混凝土分别降低了24.9%和27.3%。钢纤维和聚丙烯纤维对抗压强度的贡献率呈现先增长后下降趋势。基于冻融损伤与钢纤维和聚丙烯纤维贡献率建立冻融损伤模型。结论 喷射混杂纤维混凝土力学性能损伤量低,不易...
目的 为提高高寒地区喷射混凝土耐久性,改善冻融环境下普通喷射混凝土易开裂、抗冻性能差等问题。方法 在喷射混凝土中掺入混合纤维,通过冻融循环试验、超声波检测、压拉性能试验以及气孔结构测试等方法,研究不同冻融循环次数下喷射混杂纤维混凝土的相对纵波波速、相对压拉强度以及试件内部气孔结构变化规律。通过压拉性能损伤量对试件冻融损伤进行多项评价,分析钢纤维和聚丙烯纤维贡献率与喷射混凝土抗压强度之间的关系,并根据钢纤维和聚丙烯纤维贡献率公式建立喷射混凝土冻融损伤模型。结果 与单掺钢纤维和聚丙烯纤维试件相比,混合掺入1%钢纤维、0.1%聚丙烯纤维喷射混凝土试件的抗压强度损失分别降低了7.5%、33.3%,劈裂抗拉强度损失分别降低了15.6%、35.0%。在弦长尺寸0.1mm<1mm处,混合掺入0.1%聚丙烯和1%钢纤维喷射混凝土气泡弦长频率比单掺1%钢纤维喷射混凝土和单掺0.1%聚丙烯喷射混凝土分别降低了24.9%和27.3%。钢纤维和聚丙烯纤维对抗压强度的贡献率呈现先增长后下降趋势。基于冻融损伤与钢纤维和聚丙烯纤维贡献率建立冻融损伤模型。结论 喷射混杂纤维混凝土力学性能损伤量低,不易...
目的 为提高高寒地区喷射混凝土耐久性,改善冻融环境下普通喷射混凝土易开裂、抗冻性能差等问题。方法 在喷射混凝土中掺入混合纤维,通过冻融循环试验、超声波检测、压拉性能试验以及气孔结构测试等方法,研究不同冻融循环次数下喷射混杂纤维混凝土的相对纵波波速、相对压拉强度以及试件内部气孔结构变化规律。通过压拉性能损伤量对试件冻融损伤进行多项评价,分析钢纤维和聚丙烯纤维贡献率与喷射混凝土抗压强度之间的关系,并根据钢纤维和聚丙烯纤维贡献率公式建立喷射混凝土冻融损伤模型。结果 与单掺钢纤维和聚丙烯纤维试件相比,混合掺入1%钢纤维、0.1%聚丙烯纤维喷射混凝土试件的抗压强度损失分别降低了7.5%、33.3%,劈裂抗拉强度损失分别降低了15.6%、35.0%。在弦长尺寸0.1mm<1mm处,混合掺入0.1%聚丙烯和1%钢纤维喷射混凝土气泡弦长频率比单掺1%钢纤维喷射混凝土和单掺0.1%聚丙烯喷射混凝土分别降低了24.9%和27.3%。钢纤维和聚丙烯纤维对抗压强度的贡献率呈现先增长后下降趋势。基于冻融损伤与钢纤维和聚丙烯纤维贡献率建立冻融损伤模型。结论 喷射混杂纤维混凝土力学性能损伤量低,不易...
水分迁移引起的分凝冻胀是土体冻胀变形的主要来源,而掌握冻结过程中水分迁移规律是揭示土体冻胀机理的关键。为探究钢纤维改良土抑制冻胀机理,利用改进的冻胀装置设计进行了独立补水条件下的分层冻胀试验,获得如下结论:冻结过程中试样下部的冻胀作用会引起上部未冻土的排水,冻结过程中0.5%掺量试样的中层与上层土体排水量分别占相应土体水分迁入量的1.22%和3.45%;掺入钢纤维可明显减小试样的补水量,相比于未掺钢纤维试样,0.5%掺量试样的中层和上层补水量可分别减小10.19%,17.87%;钢纤维掺量及长度的增加不仅可促进试样中水分排出,而且会抑制土体中冰透镜体生长,降低外部水分迁入量,从而减小试样冻胀率。研究结果表明,试样中掺入钢纤维后引起的排水效应及限制冰透镜体的生长过程,是钢纤维改良土抑制冻胀的主要原因。
水分迁移引起的分凝冻胀是土体冻胀变形的主要来源,而掌握冻结过程中水分迁移规律是揭示土体冻胀机理的关键。为探究钢纤维改良土抑制冻胀机理,利用改进的冻胀装置设计进行了独立补水条件下的分层冻胀试验,获得如下结论:冻结过程中试样下部的冻胀作用会引起上部未冻土的排水,冻结过程中0.5%掺量试样的中层与上层土体排水量分别占相应土体水分迁入量的1.22%和3.45%;掺入钢纤维可明显减小试样的补水量,相比于未掺钢纤维试样,0.5%掺量试样的中层和上层补水量可分别减小10.19%,17.87%;钢纤维掺量及长度的增加不仅可促进试样中水分排出,而且会抑制土体中冰透镜体生长,降低外部水分迁入量,从而减小试样冻胀率。研究结果表明,试样中掺入钢纤维后引起的排水效应及限制冰透镜体的生长过程,是钢纤维改良土抑制冻胀的主要原因。
水分迁移引起的分凝冻胀是土体冻胀变形的主要来源,而掌握冻结过程中水分迁移规律是揭示土体冻胀机理的关键。为探究钢纤维改良土抑制冻胀机理,利用改进的冻胀装置设计进行了独立补水条件下的分层冻胀试验,获得如下结论:冻结过程中试样下部的冻胀作用会引起上部未冻土的排水,冻结过程中0.5%掺量试样的中层与上层土体排水量分别占相应土体水分迁入量的1.22%和3.45%;掺入钢纤维可明显减小试样的补水量,相比于未掺钢纤维试样,0.5%掺量试样的中层和上层补水量可分别减小10.19%,17.87%;钢纤维掺量及长度的增加不仅可促进试样中水分排出,而且会抑制土体中冰透镜体生长,降低外部水分迁入量,从而减小试样冻胀率。研究结果表明,试样中掺入钢纤维后引起的排水效应及限制冰透镜体的生长过程,是钢纤维改良土抑制冻胀的主要原因。