为调和不同研究重建的全新世长江中下游地区降水演化之间的矛盾,集成分析了具有年代可靠、指示意义明确的12条全新世长江中游降水记录和18条全新世长江下游降水记录.结果显示,长江中下游地区降水自全新世伊始逐步增多,中全新世后降水逐渐减少;晚全新世,长江中下游地区降水演化模式出现分异:长江中游整体重新转为湿润,长江下游在波动中趋于干旱.机制方面,全新世长江中下游地区降水演化总体受控于北半球夏季太阳辐射影响.晚全新世,ENSO活动显著增强,亚洲西风急流位置偏南,叠加印度夏季风环流异常,不仅导致长江中下游地区降水演化模式偏离北半球夏季太阳辐射变化趋势,也造成长江中游相对于长江下游形成更为湿润的气候.
为调和不同研究重建的全新世长江中下游地区降水演化之间的矛盾,集成分析了具有年代可靠、指示意义明确的12条全新世长江中游降水记录和18条全新世长江下游降水记录.结果显示,长江中下游地区降水自全新世伊始逐步增多,中全新世后降水逐渐减少;晚全新世,长江中下游地区降水演化模式出现分异:长江中游整体重新转为湿润,长江下游在波动中趋于干旱.机制方面,全新世长江中下游地区降水演化总体受控于北半球夏季太阳辐射影响.晚全新世,ENSO活动显著增强,亚洲西风急流位置偏南,叠加印度夏季风环流异常,不仅导致长江中下游地区降水演化模式偏离北半球夏季太阳辐射变化趋势,也造成长江中游相对于长江下游形成更为湿润的气候.
为调和不同研究重建的全新世长江中下游地区降水演化之间的矛盾,集成分析了具有年代可靠、指示意义明确的12条全新世长江中游降水记录和18条全新世长江下游降水记录.结果显示,长江中下游地区降水自全新世伊始逐步增多,中全新世后降水逐渐减少;晚全新世,长江中下游地区降水演化模式出现分异:长江中游整体重新转为湿润,长江下游在波动中趋于干旱.机制方面,全新世长江中下游地区降水演化总体受控于北半球夏季太阳辐射影响.晚全新世,ENSO活动显著增强,亚洲西风急流位置偏南,叠加印度夏季风环流异常,不仅导致长江中下游地区降水演化模式偏离北半球夏季太阳辐射变化趋势,也造成长江中游相对于长江下游形成更为湿润的气候.
为调和不同研究重建的全新世长江中下游地区降水演化之间的矛盾,集成分析了具有年代可靠、指示意义明确的12条全新世长江中游降水记录和18条全新世长江下游降水记录.结果显示,长江中下游地区降水自全新世伊始逐步增多,中全新世后降水逐渐减少;晚全新世,长江中下游地区降水演化模式出现分异:长江中游整体重新转为湿润,长江下游在波动中趋于干旱.机制方面,全新世长江中下游地区降水演化总体受控于北半球夏季太阳辐射影响.晚全新世,ENSO活动显著增强,亚洲西风急流位置偏南,叠加印度夏季风环流异常,不仅导致长江中下游地区降水演化模式偏离北半球夏季太阳辐射变化趋势,也造成长江中游相对于长江下游形成更为湿润的气候.
为调和不同研究重建的全新世长江中下游地区降水演化之间的矛盾,集成分析了具有年代可靠、指示意义明确的12条全新世长江中游降水记录和18条全新世长江下游降水记录.结果显示,长江中下游地区降水自全新世伊始逐步增多,中全新世后降水逐渐减少;晚全新世,长江中下游地区降水演化模式出现分异:长江中游整体重新转为湿润,长江下游在波动中趋于干旱.机制方面,全新世长江中下游地区降水演化总体受控于北半球夏季太阳辐射影响.晚全新世,ENSO活动显著增强,亚洲西风急流位置偏南,叠加印度夏季风环流异常,不仅导致长江中下游地区降水演化模式偏离北半球夏季太阳辐射变化趋势,也造成长江中游相对于长江下游形成更为湿润的气候.
2024年2月初贵州东部及长江中下游出现低温雨雪冰冻天气,恰逢春运高峰,给春运、能源保供及人民生活造成严重影响。为揭示此次低温雨雪冰冻天气的异常特征,利用国家气象信息中心实况观测资料、美国国家环境预报中心和国家大气研究中心(NCEP/NCAR)再分析资料以及怀化双偏振雷达资料对此次天气的基本特征和成因进行了分析。结果表明:(1) 2024年春节前贵州东部、湖南中北部、湖北东部南部及安徽西部北部出现4~6 d严重冰冻灾害,冰冻灾害主要由两轮低温雨雪天气造成,首轮低温雨雪出现在2月1—4日,降水相态具有多样性,尤其是3日雨雪最为明显,以强降雪及强冻雨为主,导致积雪和积冰快速增长。第二轮低温雨雪出现在5—6日,贵州东部、湖南中北部以冻雨为主,湖北等长江沿线以雨夹雪和降雪为主,积冰得以维持或继续增长。(2)亚洲中高纬度位势高度距平呈西低东高分布,且南支槽活跃,为低温雨雪冰冻天气提供了重要天气背景。南支槽前强盛的西南急流沿锋面爬升形成倾斜上升气流,增强了锋后的降水强度,造成第一轮强低温雨雪天气;而后南支槽减弱,但南支锋区仍维持,中低层急流和地面静止锋均维持,造成了第二轮持续低温雨雪天气。(3)受...
2024年2月初贵州东部及长江中下游出现低温雨雪冰冻天气,恰逢春运高峰,给春运、能源保供及人民生活造成严重影响。为揭示此次低温雨雪冰冻天气的异常特征,利用国家气象信息中心实况观测资料、美国国家环境预报中心和国家大气研究中心(NCEP/NCAR)再分析资料以及怀化双偏振雷达资料对此次天气的基本特征和成因进行了分析。结果表明:(1) 2024年春节前贵州东部、湖南中北部、湖北东部南部及安徽西部北部出现4~6 d严重冰冻灾害,冰冻灾害主要由两轮低温雨雪天气造成,首轮低温雨雪出现在2月1—4日,降水相态具有多样性,尤其是3日雨雪最为明显,以强降雪及强冻雨为主,导致积雪和积冰快速增长。第二轮低温雨雪出现在5—6日,贵州东部、湖南中北部以冻雨为主,湖北等长江沿线以雨夹雪和降雪为主,积冰得以维持或继续增长。(2)亚洲中高纬度位势高度距平呈西低东高分布,且南支槽活跃,为低温雨雪冰冻天气提供了重要天气背景。南支槽前强盛的西南急流沿锋面爬升形成倾斜上升气流,增强了锋后的降水强度,造成第一轮强低温雨雪天气;而后南支槽减弱,但南支锋区仍维持,中低层急流和地面静止锋均维持,造成了第二轮持续低温雨雪天气。(3)受...
2024年2月初贵州东部及长江中下游出现低温雨雪冰冻天气,恰逢春运高峰,给春运、能源保供及人民生活造成严重影响。为揭示此次低温雨雪冰冻天气的异常特征,利用国家气象信息中心实况观测资料、美国国家环境预报中心和国家大气研究中心(NCEP/NCAR)再分析资料以及怀化双偏振雷达资料对此次天气的基本特征和成因进行了分析。结果表明:(1) 2024年春节前贵州东部、湖南中北部、湖北东部南部及安徽西部北部出现4~6 d严重冰冻灾害,冰冻灾害主要由两轮低温雨雪天气造成,首轮低温雨雪出现在2月1—4日,降水相态具有多样性,尤其是3日雨雪最为明显,以强降雪及强冻雨为主,导致积雪和积冰快速增长。第二轮低温雨雪出现在5—6日,贵州东部、湖南中北部以冻雨为主,湖北等长江沿线以雨夹雪和降雪为主,积冰得以维持或继续增长。(2)亚洲中高纬度位势高度距平呈西低东高分布,且南支槽活跃,为低温雨雪冰冻天气提供了重要天气背景。南支槽前强盛的西南急流沿锋面爬升形成倾斜上升气流,增强了锋后的降水强度,造成第一轮强低温雨雪天气;而后南支槽减弱,但南支锋区仍维持,中低层急流和地面静止锋均维持,造成了第二轮持续低温雨雪天气。(3)受...
夏季中国人口密集的长江中下游地区极端高温频发,严重影响了当地经济发展和生态系统.然而,当前对该地区极端高温日数的准确预测仍然是一个挑战.例如,美国国家海洋和大气管理局第二代气候预测系统(CFSv2)在这方面表现不佳.因此,基于年际增量方法,本文建立了长江中下游地区混合季节性预测模型(HMYRB),以提高对夏季极端高温日数的预测能力.该模型基于以下4个预测因子:观测的前期4到5月欧洲西北部融雪; 3月中西伯利亚高原积雪深度; CFSv2预测夏季海洋性大陆周围海温及青藏高原上空200hPa位势高度.结果显示,HMYRB在预测极端高温日数的年际变化和趋势方面显示出良好的能力,在1983~2015年留一法交叉验证中,相关系数达到0.58,同号率为76%.此外, HMYRB在独立预测期间(2016~2022年)也保持了较高的同号率(86%)预测技巧和稳健性.此外, HMYRB对于极端高温日数高频发的年份表现良好,命中率为40%.虽然在强度上存在偏差,但HMYRB中使用的预测因子对于预测长...
夏季中国人口密集的长江中下游地区极端高温频发,严重影响了当地经济发展和生态系统.然而,当前对该地区极端高温日数的准确预测仍然是一个挑战.例如,美国国家海洋和大气管理局第二代气候预测系统(CFSv2)在这方面表现不佳.因此,基于年际增量方法,本文建立了长江中下游地区混合季节性预测模型(HMYRB),以提高对夏季极端高温日数的预测能力.该模型基于以下4个预测因子:观测的前期4到5月欧洲西北部融雪; 3月中西伯利亚高原积雪深度; CFSv2预测夏季海洋性大陆周围海温及青藏高原上空200hPa位势高度.结果显示,HMYRB在预测极端高温日数的年际变化和趋势方面显示出良好的能力,在1983~2015年留一法交叉验证中,相关系数达到0.58,同号率为76%.此外, HMYRB在独立预测期间(2016~2022年)也保持了较高的同号率(86%)预测技巧和稳健性.此外, HMYRB对于极端高温日数高频发的年份表现良好,命中率为40%.虽然在强度上存在偏差,但HMYRB中使用的预测因子对于预测长...