积雪深度(雪深)是流域水量平衡、融雪径流模拟等模型的重要输入参数,被动微波雪深遥感产品被广泛用于雪深监测。然而,由于山区积雪时空异质性强,这些空间分辨率较粗的雪深产品受到极大限制。本研究基于MODIS积雪覆盖度数据,根据经验融合规则以及积雪衰退曲线对“中国雪深长时间序列数据集”的两套雪深产品(由SMMR、SSMI和SSMI/S反演的称为Che_SSMI/S产品;由AMSR-2反演称为Che_AMSR2产品)进行空间降尺度,最终获得青藏高原500 m降尺度雪深数据(Che_SSMI/S_NSD和Che_AMSR2_NSD)。利用6景Landsat-8影像对两套降尺度雪深数据进行对比分析,结果发现两套降尺度数据与Landsat-8影像积雪空间分布吻合度均较高。与29个气象站点雪深数据相比,Che_AMSR2_NSD与实测雪深更为接近,相关系数(R)达到0.72,均方根误差(RMSE)为3.21 cm;而Che_SSMI/S_NSD精度较低(R=0.67,RMSE=4.44 cm),可能是由于采用不同传感器亮温数据的两套原始雪深产品精度不同所致。除此之外,实验表明被动微波雪深产品降尺度精度还...
积雪深度(雪深)是流域水量平衡、融雪径流模拟等模型的重要输入参数,被动微波雪深遥感产品被广泛用于雪深监测。然而,由于山区积雪时空异质性强,这些空间分辨率较粗的雪深产品受到极大限制。本研究基于MODIS积雪覆盖度数据,根据经验融合规则以及积雪衰退曲线对“中国雪深长时间序列数据集”的两套雪深产品(由SMMR、SSMI和SSMI/S反演的称为Che_SSMI/S产品;由AMSR-2反演称为Che_AMSR2产品)进行空间降尺度,最终获得青藏高原500 m降尺度雪深数据(Che_SSMI/S_NSD和Che_AMSR2_NSD)。利用6景Landsat-8影像对两套降尺度雪深数据进行对比分析,结果发现两套降尺度数据与Landsat-8影像积雪空间分布吻合度均较高。与29个气象站点雪深数据相比,Che_AMSR2_NSD与实测雪深更为接近,相关系数(R)达到0.72,均方根误差(RMSE)为3.21 cm;而Che_SSMI/S_NSD精度较低(R=0.67,RMSE=4.44 cm),可能是由于采用不同传感器亮温数据的两套原始雪深产品精度不同所致。除此之外,实验表明被动微波雪深产品降尺度精度还...
高空间分辨率雪深数据对于区域气候、水文研究具有重要的意义。利用10km空间分辨率的AMSR2 L1B亮度温度数据,结合500m空间分辨率的MODIS逐日无云积雪面积比例数据,发展了一种多源数据融合的空间动态降尺度雪深反演算法(SDD)。基于该算法获取了北疆地区500m空间分辨率的雪深数据(SDDsd),并利用研究区30个气象台站和野外实测的雪深数据对该算法反演雪深的精度进行了评估。结果表明:基于SDD方法获取的雪深数据与实测雪深数据之间的决定系数R2为0.74,均方根误差RMSE为3.47 cm;雪深反演的精度与下垫面类型密切相关,草地精度最高,城镇和建设用地次之,耕地相对较差;雪深反演的精度也会受到地形的影响,精度随坡度的增加而降低。相对于微波遥感雪深数据直接重采样结果,新的算法有效提高了浅雪区雪深反演精度,同时能更精细地描述积雪的空间分布,为理解区域气候变化、水文循环提供了可靠的数据支撑。此外,随着长时间序列全球尺度逐日无云FSC数据的生产,结合现有的长时间序列全球尺度AMSR2数据,该算法有望制备全球的降尺度雪深产品。
高空间分辨率雪深数据对于区域气候、水文研究具有重要的意义。利用10km空间分辨率的AMSR2 L1B亮度温度数据,结合500m空间分辨率的MODIS逐日无云积雪面积比例数据,发展了一种多源数据融合的空间动态降尺度雪深反演算法(SDD)。基于该算法获取了北疆地区500m空间分辨率的雪深数据(SDDsd),并利用研究区30个气象台站和野外实测的雪深数据对该算法反演雪深的精度进行了评估。结果表明:基于SDD方法获取的雪深数据与实测雪深数据之间的决定系数R2为0.74,均方根误差RMSE为3.47 cm;雪深反演的精度与下垫面类型密切相关,草地精度最高,城镇和建设用地次之,耕地相对较差;雪深反演的精度也会受到地形的影响,精度随坡度的增加而降低。相对于微波遥感雪深数据直接重采样结果,新的算法有效提高了浅雪区雪深反演精度,同时能更精细地描述积雪的空间分布,为理解区域气候变化、水文循环提供了可靠的数据支撑。此外,随着长时间序列全球尺度逐日无云FSC数据的生产,结合现有的长时间序列全球尺度AMSR2数据,该算法有望制备全球的降尺度雪深产品。