冰川是青藏高原自然资源调查监测的重点对象之一,冰川的调查监测与研究对青藏高原气候变化具有重要意义。以青藏高原冰川为研究对象,融合多源数据构建了一个随机森林模型(R2=0.72),获得了2000—2020年青藏高原逐年1 km尺度冰川预测数据集,分析了2000—2020年青藏高原冰川的空间分布特征和时空变化特征。研究表明:(1)青藏高原冰川空间分布特征为:主要分布于0°~40°坡度范围内,占比达97.92%;主要分布于4000~7000 m海拔范围内,占比达99.38%;总体呈现北坡多于南坡、西坡多于东坡的特点。(2)青藏高原冰川时空变化特征为:时间上,2000—2020年青藏高原冰川总体呈现显著退缩趋势。空间上,青藏高原边缘地区冰川存在显著变化趋势,从边缘向腹地显著变化趋势减弱,腹地以轻微变化趋势为主。(3)喜马拉雅山和念青唐古拉山冰川主要呈显著退缩趋势,喀喇昆仑山冰川主要呈轻微退缩趋势,昆仑山冰川呈轻微前进趋势与轻微退缩趋势并存的特点。
冰川是青藏高原自然资源调查监测的重点对象之一,冰川的调查监测与研究对青藏高原气候变化具有重要意义。以青藏高原冰川为研究对象,融合多源数据构建了一个随机森林模型(R2=0.72),获得了2000—2020年青藏高原逐年1 km尺度冰川预测数据集,分析了2000—2020年青藏高原冰川的空间分布特征和时空变化特征。研究表明:(1)青藏高原冰川空间分布特征为:主要分布于0°~40°坡度范围内,占比达97.92%;主要分布于4000~7000 m海拔范围内,占比达99.38%;总体呈现北坡多于南坡、西坡多于东坡的特点。(2)青藏高原冰川时空变化特征为:时间上,2000—2020年青藏高原冰川总体呈现显著退缩趋势。空间上,青藏高原边缘地区冰川存在显著变化趋势,从边缘向腹地显著变化趋势减弱,腹地以轻微变化趋势为主。(3)喜马拉雅山和念青唐古拉山冰川主要呈显著退缩趋势,喀喇昆仑山冰川主要呈轻微退缩趋势,昆仑山冰川呈轻微前进趋势与轻微退缩趋势并存的特点。
冰川是青藏高原自然资源调查监测的重点对象之一,冰川的调查监测与研究对青藏高原气候变化具有重要意义。以青藏高原冰川为研究对象,融合多源数据构建了一个随机森林模型(R2=0.72),获得了2000—2020年青藏高原逐年1 km尺度冰川预测数据集,分析了2000—2020年青藏高原冰川的空间分布特征和时空变化特征。研究表明:(1)青藏高原冰川空间分布特征为:主要分布于0°~40°坡度范围内,占比达97.92%;主要分布于4000~7000 m海拔范围内,占比达99.38%;总体呈现北坡多于南坡、西坡多于东坡的特点。(2)青藏高原冰川时空变化特征为:时间上,2000—2020年青藏高原冰川总体呈现显著退缩趋势。空间上,青藏高原边缘地区冰川存在显著变化趋势,从边缘向腹地显著变化趋势减弱,腹地以轻微变化趋势为主。(3)喜马拉雅山和念青唐古拉山冰川主要呈显著退缩趋势,喀喇昆仑山冰川主要呈轻微退缩趋势,昆仑山冰川呈轻微前进趋势与轻微退缩趋势并存的特点。
冰川是青藏高原自然资源调查监测的重点对象之一,冰川的调查监测与研究对青藏高原气候变化具有重要意义。以青藏高原冰川为研究对象,融合多源数据构建了一个随机森林模型(R2=0.72),获得了2000—2020年青藏高原逐年1 km尺度冰川预测数据集,分析了2000—2020年青藏高原冰川的空间分布特征和时空变化特征。研究表明:(1)青藏高原冰川空间分布特征为:主要分布于0°~40°坡度范围内,占比达97.92%;主要分布于4000~7000 m海拔范围内,占比达99.38%;总体呈现北坡多于南坡、西坡多于东坡的特点。(2)青藏高原冰川时空变化特征为:时间上,2000—2020年青藏高原冰川总体呈现显著退缩趋势。空间上,青藏高原边缘地区冰川存在显著变化趋势,从边缘向腹地显著变化趋势减弱,腹地以轻微变化趋势为主。(3)喜马拉雅山和念青唐古拉山冰川主要呈显著退缩趋势,喀喇昆仑山冰川主要呈轻微退缩趋势,昆仑山冰川呈轻微前进趋势与轻微退缩趋势并存的特点。
冰川是青藏高原自然资源调查监测的重点对象之一,冰川的调查监测与研究对青藏高原气候变化具有重要意义。以青藏高原冰川为研究对象,融合多源数据构建了一个随机森林模型(R2=0.72),获得了2000—2020年青藏高原逐年1 km尺度冰川预测数据集,分析了2000—2020年青藏高原冰川的空间分布特征和时空变化特征。研究表明:(1)青藏高原冰川空间分布特征为:主要分布于0°~40°坡度范围内,占比达97.92%;主要分布于4000~7000 m海拔范围内,占比达99.38%;总体呈现北坡多于南坡、西坡多于东坡的特点。(2)青藏高原冰川时空变化特征为:时间上,2000—2020年青藏高原冰川总体呈现显著退缩趋势。空间上,青藏高原边缘地区冰川存在显著变化趋势,从边缘向腹地显著变化趋势减弱,腹地以轻微变化趋势为主。(3)喜马拉雅山和念青唐古拉山冰川主要呈显著退缩趋势,喀喇昆仑山冰川主要呈轻微退缩趋势,昆仑山冰川呈轻微前进趋势与轻微退缩趋势并存的特点。
土壤碳库作为全球碳循环中最为重要的组成部分,是陆地生态系统中最大的碳库。冻土区土壤碳库是对气候变化反应最为敏感的碳库,气候的微弱变化都会对其浅层土壤有机碳产成巨大的影响,进而影响着区域景观和生态。氧化稳定性作为反映土壤有机碳抗氧化能力的指标,影响着土壤有机碳的数量与质量,受制于气候因素影响,其变异在高寒冻土区具有一定的规律性。为探究冻土的土壤有机碳及其氧化稳定性分布特征,基于实验数据与2011—2019年的气候资料,采用随机森林模型对土壤有机碳含量、不同氧化难易程度土壤有机碳组分和土壤有机碳氧化稳定性系数,以及环境变量(年均降水量、年均日照时数、年平均气温、海拔)进行多要素数字化制图并分析其控制性因素。结果表明:模型对三江源冻土区浅层土壤有机碳的解释度在54%以上,数字化制图能较好地反映土壤有机碳的分布情况;土壤有机碳主要受降水和日照时数的影响,温度次之;不同氧化难易程度组分空间分布各异,但氧化稳定性具有北高南低的分布特征;冷、干利于冻土区浅层土壤有机碳氧化稳定性的提升。
土壤碳库作为全球碳循环中最为重要的组成部分,是陆地生态系统中最大的碳库。冻土区土壤碳库是对气候变化反应最为敏感的碳库,气候的微弱变化都会对其浅层土壤有机碳产成巨大的影响,进而影响着区域景观和生态。氧化稳定性作为反映土壤有机碳抗氧化能力的指标,影响着土壤有机碳的数量与质量,受制于气候因素影响,其变异在高寒冻土区具有一定的规律性。为探究冻土的土壤有机碳及其氧化稳定性分布特征,基于实验数据与2011—2019年的气候资料,采用随机森林模型对土壤有机碳含量、不同氧化难易程度土壤有机碳组分和土壤有机碳氧化稳定性系数,以及环境变量(年均降水量、年均日照时数、年平均气温、海拔)进行多要素数字化制图并分析其控制性因素。结果表明:模型对三江源冻土区浅层土壤有机碳的解释度在54%以上,数字化制图能较好地反映土壤有机碳的分布情况;土壤有机碳主要受降水和日照时数的影响,温度次之;不同氧化难易程度组分空间分布各异,但氧化稳定性具有北高南低的分布特征;冷、干利于冻土区浅层土壤有机碳氧化稳定性的提升。
土壤碳库作为全球碳循环中最为重要的组成部分,是陆地生态系统中最大的碳库。冻土区土壤碳库是对气候变化反应最为敏感的碳库,气候的微弱变化都会对其浅层土壤有机碳产成巨大的影响,进而影响着区域景观和生态。氧化稳定性作为反映土壤有机碳抗氧化能力的指标,影响着土壤有机碳的数量与质量,受制于气候因素影响,其变异在高寒冻土区具有一定的规律性。为探究冻土的土壤有机碳及其氧化稳定性分布特征,基于实验数据与2011—2019年的气候资料,采用随机森林模型对土壤有机碳含量、不同氧化难易程度土壤有机碳组分和土壤有机碳氧化稳定性系数,以及环境变量(年均降水量、年均日照时数、年平均气温、海拔)进行多要素数字化制图并分析其控制性因素。结果表明:模型对三江源冻土区浅层土壤有机碳的解释度在54%以上,数字化制图能较好地反映土壤有机碳的分布情况;土壤有机碳主要受降水和日照时数的影响,温度次之;不同氧化难易程度组分空间分布各异,但氧化稳定性具有北高南低的分布特征;冷、干利于冻土区浅层土壤有机碳氧化稳定性的提升。