极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)因其成像不受环境、时间和气候影响的优势而备受冰川识别领域研究人员的关注。然而,现有的研究并不能充分挖掘双极化SAR影像中的冰川散射特征。针对这一问题,提出了一个基于双极化Sentinel-1 A数据的冰川分类网络S1-UNet,利用双极化SAR数据中的散射特性,实现了对冰川区域的自动提取。引入了注意力特征融合模块增强图像的低级特征与高级特征之间的关联性;采用了改进的空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块获取图像不同尺度的散射特征信息;实验结果表明,与其他语义分割和冰川识别网络相比,S1-UNet模型的性能最好,交并比、精确率分别为94.57%、97.82%,召回率达到96.79%。
光学遥感影像具备丰富的纹理和光谱信息,已成为高价值的数据资源。然而,光学遥感影像的获取过程易受光照条件与气象因素影响,尤其在多云、多雾或强降水等复杂天气情况下,常出现数据缺失或影像质量下降等问题,在一定程度上限制了其在时空连续性监测和应用效果方面的表现。相比之下,合成孔径雷达(SAR)具备全天时、全天候成像能力,能够有效弥补光学遥感影像在恶劣环境下的获取不足,成为光学遥感的重要补充手段。为了增强遥感监测的连续性和完整性,在条件生成对抗网络(cGAN)框架的基础上,针对SAR影像中常见的散斑噪声问题,提出了一种SAR-光学影像翻译方法——S2OGAN方法。该方法引入去噪卷积神经网络(DnCNN)作为去噪模块,以有效滤除噪声并提高纹理保真度;同时,结合相位一致性直方图(HOPC)作为边缘损失,进一步强化边缘特征的表达,实现纹理和结构特征的高精度重建;此外,基于GEE平台构建了冰川观测实验数据集,以探讨S2OGAN方法在冰川场景中的应用效果。结果表明:在4个常用数据集上,S2OGAN方法相较于Pix2Pix、CycleGAN、CUT、Semi-I2I等4个经典影像翻译方法展现出更优的综合性能...
藏南高原谷地具有丰富和非常丰富等级的风能资源,且地理环境和电网条件都有利于风能开发利用。为此,重点研究藏南高原宽谷地形风能资源形成机制。通过开展中尺度模式与CFD耦合的数值模拟研究,并采用气象站和声雷达测风数据进行分析验证,得到结论:山谷风环流是藏南谷地风能资源形成的主要因素;日出后,雪山顶部升温慢,山谷中荒漠地表升温迅速,显著的温差产生气压梯度力,从而形成冰川风,导致青藏高原普遍存在的午后大风现象;中尺度与CFD耦合的数值模拟方法能够有效地将局地大气环流背景风场传递到CFD模拟计算中,提高对风电场风资源特性的认识;高原河谷地形存在风向的日变化,在布设测风点之前最好通过中尺度数值模拟认清风电场区的局地大气环流背景风场的变化特征。
针对无人飞行器合成孔径雷达(UAVSAR)差分干涉测量可用于形变监测的发展潜力,介绍了美国UAVSAR的系统设计、工作原理、数据产品等,概述了国内外UAVSAR系统的发展与应用现状、存在问题和发展趋势,重点讨论了UAVSAR在火山、断裂、冰川、冻土、滑坡、地面沉降等典型地表形变监测的应用。其高空间分辨率和较强的穿透性是对星载SAR数据极好的补充,彰显了UAVSAR系统极大的应用前景,为国内机载雷达系统的研究及其在地质灾害监测方面提供参考。
为了更好利用极化特征进行较准确的干雪识别,提出了一种面向干雪识别的合成孔径雷达(synthetic aperture radar,SAR)指数模型。以新疆玛纳斯河流域为研究区,选择干雪期Radarast-2全极化SAR数据进行Freeman极化分解,获取该时期的极化特征,并分析积雪覆盖区、非积雪覆盖区极化特征差异及极化特征的变化规律;在此基础上,提出一种新的面向干雪识别的指数模型,并进行Ostu阈值分割,识别干雪范围,并与最小距离、马氏距离、最大似然等监督分类方法的干雪识别结果进行对比分析。研究结果表明:基于Freeman极化分解构建的干雪识别指数模型,其总体分类精度达到85.83%,通过非监督的方式能够识别干雪覆盖范围。
【目的】合成孔径雷达高度计采用延迟-多普勒技术有效提高观测精度,使得卫星测高技术可以应用于地形复杂区域。为探究合成孔径雷达高度计的应用进展,【方法】对合成孔径雷达高度计的发展进行概述,列举了目前主要载荷合成孔径雷达高度计的测高卫星,并对测高原理以及数据处理方法进行描述,针对合成孔径雷达高度计在海洋、冰川、内陆湖泊区域以及高程数据产品制作的应用进行重点分析。【结果】针对当前合成孔径雷达高度计应用现状,总结出合成孔径雷达高度计存在时空分辨率受限、数据精度检验代价较大、长序列数据短缺的问题,并提出多源数据协同、三维领域拓展以及数据处理方法优化的发展方向。【结论】合成孔径雷达高度计目前对海洋、冰川及内陆湖泊的高程监测方面已具有较强的应用能力,随着卫星观测密度的增加及数据优化处理方法的改进,合成孔径雷达高度计在高程监测、地形反演、水量监测等方面将具有更加广泛的应用,为探究地球水资源变化提供科学依据。
为分析冻土融化、爆破振动及降雨因素对高寒地区露天矿山边坡稳定性的影响,采用合成孔径边坡雷达监测及无人机航测技术,对某矿山边坡进行连续不间断监测,研究冻土融化、爆破振动及降雨因素影响下边坡的变形规律。研究结果表明:受冻土融化影响,区域变形均发生在白天温度较高时间段,夜晚基本无变形累积;爆破振动对作业附近松散岩体影响较大,1天内变形基本出现在爆破振动作业后的2~3 h内,其余时间基本无累积,变形曲线呈阶梯状增长;降雨后采场坡顶表土层出现多个分散分布的沉降变形区域,变形曲线没有明显规律。研究结果验证合成孔径雷达监测技术的有效性,为分析采场变形诱因提供参考。
高精度极地数字高程模型(DEM)对于我国极地研究和探索具有重要意义。德国空间局开发的分布式合成孔径雷达干涉(InSAR)测绘卫星TanDEM-X已经被证明是获取大范围高精度DEM的有效工具。X波段在冰雪表面具有一定的穿透性,会导致极地DEM存在偏差。目前国内外针对X波段在极地冰雪表面的穿透研究还很少。本文利用TanDEM-X单发双收干涉数据生成高分辨率南极冰雪地区DEM,通过与同季节的高分辨率光学DEM(REMA)差分来估计X波段穿透深度。实验结果表明:靠近Mellor冰川下游的Lambert盆地中部冰盖表面穿透深度大部分为0.5 m,少数地区可达到2 m以上;Lambert冰川下游的冰流表面大部分为1~2 m左右;山区冰雪表面可达3.9 m。高穿透值多数分布在高海拔内陆地区,而低穿透值多分布在冰流和低海拔沿海地区。穿透深度随地表含水量升高而降低。估计X波段穿透深度是明确TanDEM-X卫星在极地测绘精度的前提,对于优化后续国产分布式SAR测绘星座极地工作模式有一定的促进作用。
ICESat-2/ATLAS系统首次采用微脉冲多波束光子计数激光雷达技术,其在探测方式、数据处理方法、应用的广度和深度等方面与ICESat-1/GLAS存在明显差异。首先介绍了ICESat-2及ATLAS的性能指标、数据特点和产品信息,详细分析了光子点云去噪和分类两个关键技术,以及各算法的适应性及难点,总结了ICESat-2数据在冰盖和海冰高程测量及其变化监测、地面高程提取、森林高度提取和生物量估算、湖泊水位和蓄水量变化监测等方面的应用,最后展望了光子数据处理和应用的发展趋势和前景。
随着季节的变化,季节性冻土区活动层在冻融过程中物性参数变化显著。以东北地区季节性冻土为研究对象,采用高斯随机粗糙面来模拟粗糙不平的冻结层和融化层界面,建立了能精细描述活动层非均匀性的随机介质模型,并进行了探地雷达正演模拟。研究结果表明:活动层的冻结深度和融化深度随季节而变化,其介电常数和电导率也随季节而变化;非均匀性的活性层、起伏不平的冻结层和融化层使雷达剖面中的散射波非常发育,随时间变化,融化层起伏越大,雷达剖面中的散射波能量越强,融化层和冻结层界面的反射波识别越难。同时,证明应用探地雷达监测季节性冻土的季节变化、冻结深度和融化深度的时间和空间变化是切实可行的。