研究了青藏高原北部多年冻土区草地群落植物多样性的特征。研究表明 :草地群落间丰富度指数差异不显著 ,均匀度指数和多样性指数差异显著 (P<0 .0 5 )。均匀度指数表现为高山嵩草 (Kobresia pygmaea)草甸 <紫花针茅 (Stipa purpurea)草原 <矮嵩草 (K.humilis)草甸 <青藏苔草 (Carex moorcroftii)草甸 ,多样性指数表现为高山嵩草草甸 <矮嵩草草甸 <紫花针茅草原<青藏苔草草甸。修路时破坏的矮嵩草草甸在次生恢复过程中 ,离公路 10 0 m处群落的丰富度指数 ,均匀度指数和多样性指数大于原生群落 ,而原生群落的多样性又大于 30 m和 5 0 m处群落的多样性。地上草地群落植物多样性伴随地下冻土退化过程表现为 ,以 1m2样方统计时 ,各个演替群落间的丰富度指数差异不显著 ,而以 10 0 m2样条统计时 ,高寒草甸和草原化草甸的丰富度指数显著大于沼泽草甸和稀疏草原 (P<0 .0 5 ) ,但均匀度和多样性指数在两种统计面积时均表现为先增加后下降的变化趋势。
本文应用解析方法近似计算了多年冻土形成演化过程。计算结果表明,在特定环境条件下,多年冻土的形成演化过程主要由地层的含水量(或多年冻土地下冰含量)、岩性、依赖于岩性、含水量的地层冻融状态的导热系数和地中热流决定。在天然条件下,由于多年冻土层内地下冰的存在,持续的气候变暖在百年内不会对我国青藏高原多年冻土分布产生重大影响,如果50a内年平均气温升高2℃,根据程国栋(1984)提出的青藏高原多年冻土分带草案,主要影响多年冻土的下带和中带过渡型部分区域,包括不衔接型多年冻土在内,其面积可能将减少约20%~25%。
应用数值方法模拟了在气候持续以0.04℃/a速度变暖条件下。我国青藏高原多年冻土边缘附近高温冻土热状况的变化趋势。模拟结果表明,在计算所假设条件下,当初始地面年平均温度分别为0.5,0和-0.5℃,14m深度上的年平均温度为0.41,-0.11和-0.59℃,冻土厚度为4.5,16.8和29.0m时,50a后,初始地面年平均温度为0.5℃的多年冻土将退化为季节冻土;初始地面温度为0.0℃和-0.5℃的多年冻土将由衔接型变为不衔接型,多年冻土顶板分别下降为5m和4m,且顶板下降速度随时间延长逐渐增大;14m深度的年平均温度分别升高为1.76,0.0和0.0℃。
应用数值方法模拟了气候持续以0.04℃/a速度变暖条件下,我国青藏高原多年冻土热状况可能发生的变化趋势,计算结果表明,在计算所假设条件下,当初始地面年平均温度为0.0,-0.5,-1.5,-2.5,-3.5和-4.5℃时,14m深度上的年平均地温分别为-0.11,-0.59,-1.52,-2.45,-3.21和-4.32℃,多年冻土厚度为16.8,29.0,54.1,79.7,112.1和131.0m时,经50a的环境持续升温后,14m深度上的年平均地温分别升高为0.0,0.0,-0.36,-1.23,-2.16和-3.07℃;初始年平均地面温度高于-1.112的多年冻土由衔接型变为不衔接型,低于-1.1℃时,多年冻土上限分别由初始的1.8,1.6,1.4,和1.2m增大为2.2,2.0,1.8,1.6m,且多年冻土厚度不发生大的变化。所以,如果未来气侯以文中的速度或低于该速度变暖,50a内我国青藏高原多年冻土分布将不会发生大的明显变化。