在广泛寒区工程中,岩体的冻融破坏是一种无法忽视的自然灾害。为探究冻融环境对寒区岩体工程稳定性的影响,以寒区红砂岩为对象,开展不同冻融次数(0,10,20,30次)和不同饱和度(0、20%、40%、60%、80%、100%)岩石的单轴压缩试验,并对岩样进行SEM微观结构分析。研究表明:随着冻融循环次数和饱和度的增加,红砂岩的裂纹闭合应力σcc、起裂应力σci、损伤应力σcd、峰值应力σc和抗冻系数Kfm均逐渐降低,内部损伤逐渐加剧;红砂岩试件破坏形态由斜剪破坏和张拉破坏逐渐向“X”形破坏转变,并伴有少量碎块剥落;循环往复的冻融作用致使岩石内部原有微裂隙扩展和新裂纹出现,揭示了砂岩在不同冻融条件下的损伤演化特征。研究成果可为寒区岩体工程的稳定性及岩石的力学性质研究提供一定参考。
在广泛寒区工程中,岩体的冻融破坏是一种无法忽视的自然灾害。为探究冻融环境对寒区岩体工程稳定性的影响,以寒区红砂岩为对象,开展不同冻融次数(0,10,20,30次)和不同饱和度(0、20%、40%、60%、80%、100%)岩石的单轴压缩试验,并对岩样进行SEM微观结构分析。研究表明:随着冻融循环次数和饱和度的增加,红砂岩的裂纹闭合应力σcc、起裂应力σci、损伤应力σcd、峰值应力σc和抗冻系数Kfm均逐渐降低,内部损伤逐渐加剧;红砂岩试件破坏形态由斜剪破坏和张拉破坏逐渐向“X”形破坏转变,并伴有少量碎块剥落;循环往复的冻融作用致使岩石内部原有微裂隙扩展和新裂纹出现,揭示了砂岩在不同冻融条件下的损伤演化特征。研究成果可为寒区岩体工程的稳定性及岩石的力学性质研究提供一定参考。
在广泛寒区工程中,岩体的冻融破坏是一种无法忽视的自然灾害。为探究冻融环境对寒区岩体工程稳定性的影响,以寒区红砂岩为对象,开展不同冻融次数(0,10,20,30次)和不同饱和度(0、20%、40%、60%、80%、100%)岩石的单轴压缩试验,并对岩样进行SEM微观结构分析。研究表明:随着冻融循环次数和饱和度的增加,红砂岩的裂纹闭合应力σcc、起裂应力σci、损伤应力σcd、峰值应力σc和抗冻系数Kfm均逐渐降低,内部损伤逐渐加剧;红砂岩试件破坏形态由斜剪破坏和张拉破坏逐渐向“X”形破坏转变,并伴有少量碎块剥落;循环往复的冻融作用致使岩石内部原有微裂隙扩展和新裂纹出现,揭示了砂岩在不同冻融条件下的损伤演化特征。研究成果可为寒区岩体工程的稳定性及岩石的力学性质研究提供一定参考。
含水量是影响寒区岩体冻胀破坏的关键因素之一,而动态荷载的扰动又使其破坏过程进一步复杂化。因此,通过低温分离式霍普金森压杆实验系统,研究了冲击荷载和饱和度的变化对冻结红砂岩动态力学行为的影响,并结合低场核磁共振和扫描电镜等手段探究了砂岩试样微观结构的动态演化。研究结果表明:饱和度的增加重塑了红砂岩试样的孔隙结构,促使冻结过程中试样各尺寸孔隙的发育与扩展,且完全饱和时冻结试样以中-大孔隙发育为主。冲击荷载作用下,以临界饱和度为界,冻结砂岩的动态强度、弹性模量和脆性指数BI均随饱和度增加呈现先增大后减小的趋势。与之相反,冻结砂岩的极限变形能力随饱和度变化呈现相反趋势。此外,随着冲击荷载的增加,冻结砂岩的动态强度、弹性模量和峰值应变均逐渐增加,表现出明显的应变率强化效应;而其脆性指数逐渐降低,冲击速度由4 m/s增加至6 m/s时,完全饱和试样的脆性指数下降了8.1%,表明其动态破坏模式由脆性向韧性的转变。而随着饱和度和冲击荷载的增加,冻结试样从张拉破坏转变为粉碎性的复合破坏,且破碎岩块质量的分布仍然与冻结试样的动态强度密切相关。最后,基于试验结果,讨论了饱和度变化对寒区冻结砂岩动态力学行为的...
含水量是影响寒区岩体冻胀破坏的关键因素之一,而动态荷载的扰动又使其破坏过程进一步复杂化。因此,通过低温分离式霍普金森压杆实验系统,研究了冲击荷载和饱和度的变化对冻结红砂岩动态力学行为的影响,并结合低场核磁共振和扫描电镜等手段探究了砂岩试样微观结构的动态演化。研究结果表明:饱和度的增加重塑了红砂岩试样的孔隙结构,促使冻结过程中试样各尺寸孔隙的发育与扩展,且完全饱和时冻结试样以中-大孔隙发育为主。冲击荷载作用下,以临界饱和度为界,冻结砂岩的动态强度、弹性模量和脆性指数BI均随饱和度增加呈现先增大后减小的趋势。与之相反,冻结砂岩的极限变形能力随饱和度变化呈现相反趋势。此外,随着冲击荷载的增加,冻结砂岩的动态强度、弹性模量和峰值应变均逐渐增加,表现出明显的应变率强化效应;而其脆性指数逐渐降低,冲击速度由4 m/s增加至6 m/s时,完全饱和试样的脆性指数下降了8.1%,表明其动态破坏模式由脆性向韧性的转变。而随着饱和度和冲击荷载的增加,冻结试样从张拉破坏转变为粉碎性的复合破坏,且破碎岩块质量的分布仍然与冻结试样的动态强度密切相关。最后,基于试验结果,讨论了饱和度变化对寒区冻结砂岩动态力学行为的...
含水量是影响寒区岩体冻胀破坏的关键因素之一,而动态荷载的扰动又使其破坏过程进一步复杂化。因此,通过低温分离式霍普金森压杆实验系统,研究了冲击荷载和饱和度的变化对冻结红砂岩动态力学行为的影响,并结合低场核磁共振和扫描电镜等手段探究了砂岩试样微观结构的动态演化。研究结果表明:饱和度的增加重塑了红砂岩试样的孔隙结构,促使冻结过程中试样各尺寸孔隙的发育与扩展,且完全饱和时冻结试样以中-大孔隙发育为主。冲击荷载作用下,以临界饱和度为界,冻结砂岩的动态强度、弹性模量和脆性指数BI均随饱和度增加呈现先增大后减小的趋势。与之相反,冻结砂岩的极限变形能力随饱和度变化呈现相反趋势。此外,随着冲击荷载的增加,冻结砂岩的动态强度、弹性模量和峰值应变均逐渐增加,表现出明显的应变率强化效应;而其脆性指数逐渐降低,冲击速度由4 m/s增加至6 m/s时,完全饱和试样的脆性指数下降了8.1%,表明其动态破坏模式由脆性向韧性的转变。而随着饱和度和冲击荷载的增加,冻结试样从张拉破坏转变为粉碎性的复合破坏,且破碎岩块质量的分布仍然与冻结试样的动态强度密切相关。最后,基于试验结果,讨论了饱和度变化对寒区冻结砂岩动态力学行为的...
为研究饱和度对冻结红砂岩动态压缩性能及能量特性的影响,对饱和度分别为0,25%,50%,75%和100%的冻结红砂岩进行SHPB动态冲击压缩试验。研究结果表明:不同饱和度的冻结红砂岩破坏机制主要受未冻水弱化效应、冻结强化效应和冻胀损伤效应3种机制的影响;当饱和度低于25%时,未冻结合水对岩石的动态力学性能产生弱化作用;当饱和度介于25%~75%之间时,冻结强化作用占主导地位;当饱和度高于75%时,水冰相变导致的冻胀损伤占主导地位。冻结红砂岩的峰值强度、耗散能、能量利用率随饱和度的增加均呈先减小后增大再减小的三段式分布规律,且具有明显的应变率效应,而冻结红砂岩冲击压缩破坏的分形维数随饱和度的增加呈先上升后下降再上升的趋势。冻结红砂岩的冲击压缩力学性质及其能量特征均与冻结强化和冻胀损伤的相互作用密切相关。
为研究饱和度对冻结红砂岩动态压缩性能及能量特性的影响,对饱和度分别为0,25%,50%,75%和100%的冻结红砂岩进行SHPB动态冲击压缩试验。研究结果表明:不同饱和度的冻结红砂岩破坏机制主要受未冻水弱化效应、冻结强化效应和冻胀损伤效应3种机制的影响;当饱和度低于25%时,未冻结合水对岩石的动态力学性能产生弱化作用;当饱和度介于25%~75%之间时,冻结强化作用占主导地位;当饱和度高于75%时,水冰相变导致的冻胀损伤占主导地位。冻结红砂岩的峰值强度、耗散能、能量利用率随饱和度的增加均呈先减小后增大再减小的三段式分布规律,且具有明显的应变率效应,而冻结红砂岩冲击压缩破坏的分形维数随饱和度的增加呈先上升后下降再上升的趋势。冻结红砂岩的冲击压缩力学性质及其能量特征均与冻结强化和冻胀损伤的相互作用密切相关。
为研究饱和度对冻结红砂岩动态压缩性能及能量特性的影响,对饱和度分别为0,25%,50%,75%和100%的冻结红砂岩进行SHPB动态冲击压缩试验。研究结果表明:不同饱和度的冻结红砂岩破坏机制主要受未冻水弱化效应、冻结强化效应和冻胀损伤效应3种机制的影响;当饱和度低于25%时,未冻结合水对岩石的动态力学性能产生弱化作用;当饱和度介于25%~75%之间时,冻结强化作用占主导地位;当饱和度高于75%时,水冰相变导致的冻胀损伤占主导地位。冻结红砂岩的峰值强度、耗散能、能量利用率随饱和度的增加均呈先减小后增大再减小的三段式分布规律,且具有明显的应变率效应,而冻结红砂岩冲击压缩破坏的分形维数随饱和度的增加呈先上升后下降再上升的趋势。冻结红砂岩的冲击压缩力学性质及其能量特征均与冻结强化和冻胀损伤的相互作用密切相关。
水合物饱和度参数的准确计算对于水合物资源量的评价至关重要。本文提出利用超声波测井资料与等效介质模型相结合的方法,可有效评价祁连山冻土区孔隙型水合物储层水合物饱和度变化特征,并在典型孔隙型水合物钻孔DKXX-13进行了应用。基于等效介质理论的弹性波速度模型正演模拟的纵波速度相比基于双相介质理论的弹性波速度模型更加吻合实际测井纵波速度,可用于分析孔隙型水合物储层的纵波速度特征;通过正演模拟的纵波速度与实际测井纵波速度的对比,识别出X30.0~X30.2m、X30.3~X30.4m、X31.1~X31.6m、X31.7~X31.9m、X32.0~X32.2m井段存在水合物,水合物赋存井段地层的水合物饱和度变化范围为13.0%~85.0%,平均值为61.9%,与标准阿尔奇公式估算结果和现场岩芯测试结果基本一致。研究结果可为祁连山冻土区水合物地层测井评价与地震勘探提供理论依据和技术支撑。