利用2006—2020年青藏铁路沿线多年冻土区长期地温监测资料,选取高温多年冻土区内三类典型路基结构(普通路基、U型块石路基、块石护坡路基)对应的长期监测断面,对15年间路基下20 m深度范围内温度场、年平均地层温度及年最高地层温度的演化规律进行分析和研究。监测和分析结果表明:普通路基左右路肩下冻土层的年平均地层温度增长速率高于天然场地同深度冻土层的增长速率。U型块石路基下年平均地温始终低于天然场地年平均地温并保持一定差值,且左右路肩下的地温差异不可忽视。块石护坡路基左路肩的年平均地温与天然孔相差不大,而右路肩的年平均地温始终低于天然孔,左右路肩下的地温差异要小于U型块石路基。普通路基下人为多年冻土上限始终低于天然多年冻土上限。U型块石路基和块石护坡路基左右路肩的人为多年冻土上限均已抬升至路基本体内,左右路肩的融深差值为1.0~1.5 m,块石护坡路基融深差值略低于U型块石路基。综合来看,由于工程及气候变暖等热扰动的影响,高温多年冻土区内的普通路基已不能维持其下多年冻土的热稳定性,需采取一定的主动降温补强措施。U型块石路基及块石护坡路基对其下多年冻土具有一定的主动降温效果,但左右路肩的...
为研究混凝土水化热对高温多年冻土区桩基温度场的影响,以传热学为理论基础,给出温度场的控制微分方程和边界条件,采用有限元数值分析方法求解,分析混凝土灌注桩施工后桩土温度场的分布规律,讨论入模温度及混凝土水化热对回冻过程的影响。研究结果表明:入模温度和混凝土总水化热对回冻过程有显著影响,回冻时间随入模温度的增加而延长;随总水化热的降低而减少。对高温多年冻土而言,混凝土灌注桩施工带给冻土温度场的热扰动使回冻过程更为漫长,可通过在混凝土中适当加入粉煤灰和矿渣等掺合料及降低混凝土入模温度来减少回冻时间,缩短施工工期。
针对高温多年冻土区隧道传热模型及温度场分布规律开展深入的理论分析、数值模拟和现场监测研究。首先,基于热传导理论,建立隧道衬砌和围岩径向传热模型,利用叠加原理和拉普拉斯变换法求得寒区隧道衬砌和围岩的温度场理论解;其次,建立洞内空气的传热微分方程,根据能量守恒原理,建立隧道纵向洞内空气与洞壁的气-固耦合传热模型,结合径向温度场理论解,提出多年冻土区隧道衬砌、围岩及洞内空气的三维温度场计算方法,该计算方法可考虑围岩、衬砌、保温层等多层传热介质及隧道沿洞轴线的不同埋深;最后,根据依托工程现场实测数据,反演围岩的热物性参数,并运用推导的隧道纵向传热模型和横向传热模型,分析姜路岭隧道不同冻土区内衬砌和围岩中的温度场分布规律。研究结果表明:在隧道径向,多年冻土和非冻土围岩温度都会随洞内气温的变化而产生波动,距离围岩表面越近,温度振幅越大,且热量在围岩径向传递过程中有一定的滞后性;在隧道纵向,在一年中最冷时刻,隧道衬砌及围岩温度呈"两端低,中间高",此时姜路岭隧道围岩、二衬表面最高温度分别为-2.72℃,-7.80℃;在一年中最热时刻,衬砌温度呈"两端高,中间低",此时姜路岭隧道二衬表面最低温度为1....
以青海共和至玉树公路K418+462处块石路基为研究对象,分析了沥青路面铺设前、后的块石层内地温、块石层底热流密度以及路基中孔地温变化过程,研究了沥青路面对块石层内自然对流降温效应的影响。结果表明:块石层内上下温差在路面铺设后明显降低,导致路面铺设后块石层中自然对流强度降低为路面铺设前的约40%;在沥青路面强吸热以及块石自然对流强度降低的影响下,冷季块石层峰值散热强度仅为路面铺设前的14%,同时造成暖季时路基吸热期延长约40d以及路基吸热峰值强度剧烈增加,最终表现为路基下伏多年冻土出现升温现象,冻土上限在路面铺设后下降约50cm。为增强块石路基在高温多年冻土区的适用性,建议尽量减少块石上部过渡层厚度,同时引入架空层来加强冷季时块石层内自然对流降温效应。
为了给高温多年冻土地区通风管路基建设提供参考,根据青海省共和至玉树高等级公路现场监测数据,研究了通风管路基的传热特征,揭示不同季节通风管管内温度变化过程,分析了冻土上限附近热流密度状况。研究结果表明:冷季时通风管路基底部地温低至-6℃,通风管将外界冷空气的冷量直接引导至路基底部,对下伏冻土层产生了主动冷却效果;在2年的观测期内,路基下伏多年冻土层地温未出现明显变化,冻土上限保持稳定;与同期天然孔地温相比,路基底层下5m附近的土层出现了约0.3℃的升温,但该升温过程在通风管路基建设完成后初期已完成,随后趋于稳定,冻土热状况较为稳定;暖季时通风管的吸热强度是冷季放热强度的2.4倍,1年的吸热量约为7.76 MJ·m-2,通风管路基整体处于缓慢吸热状态。
青藏公路高温多年冻土区高路堤纵向裂缝严重,传统被动保护冻土的措施已不能有效治理其病害。对青藏公路利用热棒技术处治病害的试验进行了系统分析,结果表明热棒技术是有效的。