以高寒冻融区牡丹江—佳木斯高速铁路沿线典型的路堑工程为研究对象,通过现场试验、数值模拟和理论分析相结合的手段,研究了寒区高速铁路路堑工程温度场随时间演化的一般特性,分析了积雪覆盖对基床水热状态的影响,讨论了影响路堑边坡失稳的因素。结果表明:路堑的冻结过程为自上向下的单向冻结,而融化过程分别为自上向下和从下向上的双向融化;厚积雪覆盖会对基床起到保温作用,有利于降低最大冻结深度,但融雪水的入渗将导致基床产生峰值冻胀或翻浆冒泥病害;寒区边坡的失稳滑塌主要发生在冻融交界面处。为保证深季节冻土区高速铁路的长期服役性能,建议在基床表层铺设防渗吸热材料(沥青混凝土封闭层)来控制基床的总冻胀量。
着眼于季节性冻土区高铁路基防冻胀填料改良及路基保温措施,提出纤维泡沫混凝土作为基床表层填料或保温强化层材料的防冻胀路基结构形式。对纤维泡沫混凝土进行物理力学特性及抗冻融耐久性试验,在此基础上采用有限元仿真分析级配碎石基床、纤维泡沫混凝土基床、保温强化层基床3种路基结构的层间剪切应力、竖向应力、竖向位移等力学参数。结果表明:纤维泡沫混凝土具有良好的保温特性及冻融耐久性,其作为基床表层填料与级配碎石相比,路基结构力学参数均得到改善;其作为保温强化层材料可有效降低级配碎石基床表层剪切应力的最大值,提高路基结构整体稳定性。在一定程度上证明了纤维泡沫混凝土作为季节性冻土区高铁路基防冻胀材料的可行性。
为研究季节性冻土区高速铁路路基修筑后冻融变形的分布规律,考虑冰水相变的作用,采用热弹性力学理论推导出冻土路基应力和变形的二维数值方程,建立路基力学有限元模型,实现路基温度场和变形场的耦合连续计算。而后考虑路基填土的不同冻胀率,研究哈尔滨—大连(哈大)高速铁路路基冻融过程中的变形和应力分布规律。计算结果表明:随着冻胀率的增大和冻深的发展,季节性冻土地区的路基竖向位移、横向差异变形、横向位移及拉应力等随之增加。路基表面的竖向位移有可能超过高速铁路路基变形允许值,并且路肩和边坡处可能在冻融过程中出现拉破坏而导致裂缝。进一步的分析表明:路基中水分重分布引起的土体冻胀率、融沉压缩系数等的变化是影响季节性冻土地区哈大高速铁路路基变形稳定性的主要原因。
研究路基及周边地区土体地温的分布规律是季节性冻土地区高速铁路路基的稳定性分析的重要基础。结合哈大(哈尔滨——大连)高速铁路双城地区3 a的现场监测数据和气温资料,分析坡脚、天然位置及路基不同位置的地温分布规律。在此过程中,利用地温振幅、平均地温等结果,建立相应的地温估算公式,为确定数学模型的基本边界条件提供依据。建立非稳态相变温度场的数学模型,研究路基地温随时间的变化特点和沿深度的分布规律,并预测地温场的变化趋势。现场监测和模拟计算结果表明:地温分布规律主要与土体构成、土体热扩散能力、气候和位置等因素有关。季节性冻土地区高速铁路路基最终形成较为稳定的季节冻结层,相对稳定的地温和不对称的地温场。路基阴阳坡地温场的不对称,可能导致路基横向差异变形和纵向的不均匀变形,进而影响路基的稳定性。
运用土壤冻结融化条件下热传导的基本方程和数值理论方法,结合哈大客运专线具体工程,通过模拟分析在不同的路基高度、几何断面选型、填料选择和施工、竣工季节条件下,对比分析了换填路基结构不同部位的季节性最大冻结深度在今后50a内随着时间在全球升温的背景趋势下的变化规律。通过分析并讨论换填路基的热状况特征及其分布变化规律,在数值模拟结果的基础上,结合季节性冻土区高速铁路无碴轨道路基结构的特点,总结并提出了较为合理的换填路基高度、几何结构形式选型、路基填料的选择分类以及路基施工和竣工季节,并通过以上结果分析评价了换填后路基的整体热稳定性。