共检索到 8

Global warming due to climate change has substantial impact on high-altitude permafrost affected soils. This raises a serious concern that the microbial degradation of sequestered carbon can result in alteration of the biogeochemical cycles. Therefore, the characterization of permafrost affected soil microbiomes, especially of unexplored high-altitude, low oxygen arid region, is important for predicting their response to climate change. This study presents the first report of the bacterial diversity of permafrost-affected soils in the Changthang region of Ladakh. The relationship between soil pH, organic carbon, electrical conductivity, and available micronutrients with the microbial diversity was investigated. Amplicon sequencing of permafrost affected soil samples from Jukti and Tsokar showed that Proteobacteria and Actinobacteria were the dominant phyla in all samples. The genera Brevitalea, Chthoniobacter, Sphingomonas, Hydrogenispora, Clostridium, Gaiella, Gemmatimonas were relatively abundant in the Jukti samples whereas the genera Thiocapsa, Actinotalea, Syntrophotalea, Antracticibcterium, Luteolibacter, Nitrospirillum dominated the Tsokar sample. Correlation analyses highlighted the influence of soil geochemical parameters on the bacterial community structure. PCoA analyses showed that the bacterial beta diversity varied significantly between the sampling locations (PERMANOVA test (F-value: 2.3316; R2 = 0.466, p = 0.001) and similar results were also obtained while comparing genus abundance data using the ANOSIM test (R = 0.345, p = 0.007).

期刊论文 2025-05-02 DOI: 10.1038/s41598-025-94542-9 ISSN: 2045-2322

The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.

期刊论文 2024-09-01 DOI: 10.1007/s42770-024-01365-3 ISSN: 1517-8382

Soil microbial communities in the Arctic play a critical role in regulating the global carbon (C) cycle. Vast amounts of C are stored in northern high latitude soils, and rising temperatures in the Arctic threaten to thaw permafrost, making relatively inaccessible C sources more available for mineralization by soil microbes. Few studies have characterized how microbial community structure responds to thawing permafrost in the context of varying soil chemistries associated with contrasting tundra landscapes. We subjected active layer and permafrost soils from upland and lowland tundra sites on the North Slope of Alaska to a soil-warming incubation experiment and compared soil bacterial community profiles (obtained by 16S rRNA amplicon sequencing) before and after incubation. The influence of soil composition (characterized by mid-infrared [MIR] spectroscopy) on bacterial community structure and class abundance was analyzed using redundancy and correlation analyses. We found increased abundances of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes [Sphingobacteriia] post incubation, particularly in permafrost soils. The categorical descriptors site and soil layer had the most explanatory power in our predictive models of bacterial community structure, highlighting the close relationship between soil bacteria and the soil environment. Specific soil chemical attributes characterizing the soil environments that were found to be the best predictors included MIR spectral bands associated with inorganic C, silicates, amide II (C=N stretch), and carboxylics (C-O stretch), and MIR peak ratios representing C substrate quality. Overall, these results further characterize soil bacterial community shifts that may occur as frozen environments with limited access to C sources, as is found in undisturbed permafrost, transition to warmer and more C-available environments, as is predicted in thawing permafrost due to climate change.

期刊论文 2020-09-01 DOI: 10.1016/j.soilbio.2020.107882 ISSN: 0038-0717

Diurnal freeze-thaw cycles (FTCs) occur in the spring and autumn in boreal wetlands as soil temperatures rise above freezing during the day and fall belowfreezing at night. A surge inmethane emissions fromthese systems is frequently documented during spring FTCs, accounting for a large portion of annual emissions. In boreal wetlands, methane is produced as a result of syntrophicmicrobial processes, mediated by a consortiumof fermenting bacteria and methanogenic archaea. Further research is needed to determine whether FTCs enhance microbial metabolism related tomethane production through the cryogenic decomposition of soil organicmatter. Previous studies observed large methane emissions during the spring thawed period in the Sanjiang seasonal frozen marsh of Northeast China. To investigate how FTCs impact the soilmicrobial community and methanogen abundance and activity, we collected soil cores from the Sanjiang marsh during the FTCs of autumn 2014 and spring 2015. Methanogens were investigated based on expression level of themethyl coenzyme reductase (mcrA) gene, and soil bacterial and archaeal community structures were assessed by 16S rRNA gene sequencing. The results show that a decrease in bacteria and methanogens followed autumns FTCs, whereas an increase in bacteria and methanogens was observed following spring FTCs. The bacterial community structure, including Firmicutes and certain Deltaproteobacteria, was changed following autumn FTCs. Temperature and substrate were the primary factors regulating the abundance and composition of the microbial communities during autumn FTCs, whereas no factors significantly contributing to spring FTCs were identified. Acetoclastic methanogens from order Methanosarcinales were the dominant group at the beginning and end of both the autumn and spring FTCs. Active methanogens were significantly more abundant during the diurnal thawed period, indicating that the increasing number of FTCs predicted to occur with global climate change could potentially promote CH4 emissions in seasonal frozen marshes. (c) 2018 Elsevier B.V. All rights reserved.

期刊论文 2018-06-01 DOI: 10.1016/j.scitotenv.2017.12.309 ISSN: 0048-9697

【目的】研究北极地区表层季节性融解冻土(活跃层)及埋藏于其下深层永久冻土(永冻层)的土壤呼吸速率、土壤微生物组差异和活性甲烷氧化微生物。【方法】在相距2700 km的挪威斯瓦尔巴群岛和俄罗斯西伯利亚典型冻土区,共获得4个活跃层及4个永冻层土壤。模拟北极夏季近原位温度(10°C)培养土壤样品,测定土壤呼吸强度;利用稳定性同位素13CH4示踪土壤甲烷氧化微生物核酸DNA;结合高通量测序16S rR NA基因,实时荧光定量qPCR及土壤理化性质分析,研究活跃层和永冻层土壤微生物群落差异及其对土壤呼吸的影响,揭示活性甲烷氧化微生物的群落组成。【结果】西伯利亚冻土区土壤呼吸速率明显高于挪威斯瓦尔巴岛地区,其平均速率相差高达17倍。冻土区活跃层呼吸速率高于永冻层,活跃层约为61–7293 nmol CO2/(g dws·d),而永冻层约为47–523 nmol CO2/(g dws·d)。相应的,在所有活跃层中均发现变形菌和酸杆菌门共计10个微生物科的丰度显著高于永冻层,其中Hyphomicrobiaceae、...

期刊论文 2017-04-11 DOI: 10.13343/j.cnki.wsxb.20170058

Antarctic glacier forefields are extreme environments and pioneer sites for ecological succession. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats, and new terrain is becoming exposed to soil formation and microbial colonization. However, only little is known about the impact of environmental changes on microbial communities and how they develop in connection to shifting habitat characteristics. In this study, using a combination of molecular and geochemical analysis, we determine the structure and development of bacterial communities depending on soil parameters in two different glacier forefields on Larsemann Hills, East Antarctica. Our results demonstrate that deglaciation-dependent habitat formation, resulting in a gradient in soil moisture, pH and conductivity, leads to an orderly bacterial succession for some groups, for example Cyanobacteria, Bacteroidetes and Deltaproteobacteria in a transect representing classical' glacier forefields. A variable bacterial distribution and different composed communities were revealed according to soil heterogeneity in a slightly matured' glacier forefield transect, where Gemmatimonadetes, Flavobacteria, Gamma- and Deltaproteobacteria occur depending on water availability and soil depth. Actinobacteria are dominant in both sites with dominance connected to certain trace elements in the glacier forefields.

期刊论文 2013-07-01 DOI: 10.1111/1574-6941.12105 ISSN: 0168-6496

【目的】对比分析中国典型高纬度冻土区和高海拔冻土区土壤可培养细菌的多样性。【方法】采用NM、TSA、R2A 3种培养基分离培养不同冻土区土壤可培养细菌,用通用引物扩增分离的细菌16S rRNA基因,根据系统发育分析进行鉴定。【结果】从6个样品中得到冻土土壤可培养细菌的菌落数量为4.70×103-2.57×105 cfu/g(土壤干重),根据不同的菌落形态分离出144株可培养细菌。纯培养物的16S rRNA基因部分序列分析表明:我国高纬度冻土区土壤样品中的细菌分别属于Firmicutes分支(59.52%)、Gammaproteobacteria分支(38.10%)、Betaproteobacteria分支(2.38%),其中假单胞菌属(Pseudomonas)、芽胞杆菌属(Bacillus)、类芽胞杆菌属(Paenibacillus)的菌株为该区域的三大优势菌群。我国高海拔冻土区土壤样品中分离细菌属于Gammaproteobacteria分支(89.22%)、Firmicutes分支(8.82%)和Bacteroidetes分支(1.96%)。优势菌群为假单胞菌属(Pseudomona...

期刊论文 2011-12-28 DOI: 10.13343/j.cnki.wsxb.2011.12.002

【目的】心脑血管疾病是一种世界性疾病,严重危害人类健康,溶栓酶是治疗该病的有效药物之一。而极端环境中的溶栓微生物因其特殊的生存方式,可能分泌高效、安全的新型溶栓酶。因此,为了获得这种具有特殊功能的溶栓酶,我们从青藏高原高海拔冻土中进行了溶栓菌的筛选。【方法】首先,本文通过血粉-琼脂平板初步筛选具有血粉水解功能的菌株,然后对其进行体外溶栓试验以检验其人工血栓溶解功能,并用纤维蛋白平板法测定其纤溶活性,最后通过生理生化试验和16S rRNA基因序列分析方法对该菌进行分类鉴定。【结果】本文从青海省玉树藏族自治州海拔4300 m的冻土样品中筛选获得了菌株DR-536,不仅具有水解血粉的功能,还具有体外溶栓功能,且能够水解纤维蛋白,纤溶活性为51.80 IU/mL(以尿激酶为标准)。最后,分类鉴定结果显示菌株DR-536是一株金黄节杆菌(Arthrobacter aurescens)。【结论】本文首次从青藏高原高海拔土壤中进行了溶栓菌的筛选,并获得了一株新型溶栓菌,为进一步研究和开发高效、安全的新型溶栓酶提供了菌源。

期刊论文 2010-02-23 DOI: 10.13343/j.cnki.wsxb.2010.02.008
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页