共检索到 2

The Early 20th Century Warming (ETCW) in the northern high latitudes was comparable in magnitude to the present-day warming yet occurred at a time when the growth in atmospheric greenhouse gases was rising significantly less than in the last 40 years. The causes of ETCW remain a matter of debate. The key issue is to assess the contribution of internal variability and external natural and human impacts to this climate anomaly. This paper provides an overview of plausible mechanisms related to the early warming period that involve different factors of internal climate variability and external forcing. Based on the vast variety of related studies, it is difficult to attribute ETCW in the Arctic to any of major internal variability mechanisms or external forcings alone. Most likely it was caused by a combined effect of long-term natural climate variations in the North Atlantic and North Pacific with a contribution of the natural radiative forcing related to the reduced volcanic activity and variations of solar activity as well as growing greenhouse gases concentration in the atmosphere due to anthropogenic emissions.

期刊论文 2021-11-01 DOI: 10.1016/j.earscirev.2021.103820 ISSN: 0012-8252

Significant climatic changes over Northern Eurasia during the 20th century have been reflected in numerous variables of economic, social, and ecological interest, including the natural frequency of forest fires. For the former USSR, we are now using the Global Daily Climatology Network and a new Global Synoptic Data Network archive, GSDN, created jointly by U.S. National Climatic Data Center and Russian Research Institute for Hydrometeorological Information. Data from these archives (approximately 1500 of them having sufficiently long meteorological time series suitable for participation in our analyses) are employed to estimate systematic changes in indices used in the United States and Russia to assess potential forest fire danger. We use four indices: (1) Keetch-Byram Drought Index, (KBDI; this index was developed and widely used in the United States); (2) Nesterov, (3) Modified Nesterov, and (4) Zhdanko Indices (these indices were developed and widely used in Russia). Analyses show that after calibration, time series of the days with increased potential forest fire danger constructed using each of these three indices (a) are well correlated and (b) deliver similar conclusions about systematic changes in the weather conditions conducive to forest fires. Specifically, over the Eastern half of Northern Eurasia (Siberia and the Russian Far East) statistically significant increases in indices that characterize the weather conditions conducive to forest fires were found. These areas coincide with the areas of most significant warming during the past several decades south of the Arctic Circle. West of the Ural Mountains, the same indices show a steady decrease in the frequency of dry weather summer days during the past 60 yr. This study is corroborated with available statistics of forest fires and with observed changes in drought statistics in agricultural regions of Northern Eurasia. (C) 2006 Elsevier B.V. All rights reserved.

期刊论文 2007-04-01 DOI: 10.1016/j.gloplacha.2006.07.029 ISSN: 0921-8181
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页