共检索到 2

To achieve the repeatability of aerospace thermal components, C/TaC-SiC composites were fabricated. Cycle ablation and bending tests were carried out. After 3 x 60 s of ablation beyond 2100 degrees C, the mechanical property retention rate was 80.9%. Interestingly, a reaction similar to ouroboros ring, in which the cyclic reactions of TaC being oxidized to Ta2O5 and Ta2O5 being reduced to TaC, occurred in the central ablation region of C/TaC-SiC composites. On the one hand, the continuous generation of TaC could prevent liquid state Ta2O5 from being blown off central ablation region, playing a similar role in water and soil conservation. On the other hand, liquid Ta2O5 covered the surface of C/TaC-SiC composites during ablation process, contributing to block the inward permeation of oxidized gases. In addition, novel Grotto structures were detected in the transitional ablation region of C/TaC-SiC composites. The formation reason of the Grotto structure has also been discussed.

期刊论文 2024-11-01 DOI: 10.1111/ijac.14867 ISSN: 1546-542X

Given the advantages of remote sensing, an increasing number of satellite aerosol optical depths (AOD) have been utilized to evaluate near-ground PM2.5. However, the spatiotemporal relationship between AODs and PM2.5 still lacks a comprehensive investigation, especially in some regions with severe pollution within China. Here, we investigated the spatiotemporal relationships between several satellite AODs and the near-surface PM2.5 concentration across China and its 14 representative regions during 2016-2018 using the correlation coefficient (R), the PM2.5/AOD ratio (eta), the geo-detector (q), and the different aerosol-dominated regimes. The results showed that the MODIS AOD from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm strongly correlates with PM2.5 (R > 0.6) in China, particularly in the Chengyu (CY), Beijing-Tianjin-Hebei (BTH), and Yangtze River Delta (YRD) regions. The close correlations (R = 0.7) exist between PM2.5 and MODIS and VIIRS AOD from the deep blue (DB) algorithm in the CY, BTH, and YRD regions. Under the key aerosols affecting China (e.g., sulfate and dust), there is a strong correlation (R > 0.5) between the PM2.5 and MODIS and VIIRS AODs from the MAIAC and DB algorithms, with the higher concentration of ground-level PM2.5 per unit of these AODs (eta > 130). The MAIAC AOD (Terra/Aqua) can better explain the spatial distribution (q > 0.4) of PM2.5 than those of AODs from the dark target (DT) and DB algorithms applied to the MODIS over China and its specific regions across seasons. The performance of the Advanced Himawari Imager (AHI) AOD (R > 0.5, q > 0.3) was close to that of the MAIAC AOD during the spring and summer; however, it was far less than the MAIAC AOD in the autumn and winter seasons. The investigation provides instructions for estimating the near-surface PM2.5 concentration based on AOD in different regions of China.

期刊论文 2022-10-01 DOI: http://dx.doi.org/10.3390/rs14225841
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页