青藏高原因其复杂的地形地势和和积雪分布使得多种雪深算法未达到理想的精度。基于新一代被动微波数据AMSR2(Advanced Microwave Scanning Radiometer2),应用随机森林算法(Random Forest,RF)将亮温(Brightness Temperature,BT)和亮温差(Brightness Temperature Difference,BTD)作为参数输入,并将高程和纬度参数引入雪深反演模型中,经过模拟退火算法进行有效反演因子筛选,构建了基于随机森林算法的青藏高原雪深反演模型。结果表明:与AMSR2全球雪深产品相比,随机森林算法的拟合优度(R2)由0.41提升至0.60,均方根误差(Root Mean Square Error,RMSE)由7.36cm降至4.88cm,偏差(BIAS)由3.24cm减小至-0.16cm,随机森林雪深反演模型在青藏高原的精度更高;青藏高原平均海拔超过4 000m,当海拔大于青藏高原平均海拔时,随机森林算法的反演效果最差,但RMSE仅为3.78cm,BIAS仅为-0.09cm;高原南部(25°~30°N)因其复杂的地...
The surface seasonal freeze/thaw (F/T) signal detected by passive microwave remote sensing is very important for the water cycle, carbon cycle and climate change research. In this study, we evaluated and analyzed the Soil Moisture Active Passive (SMAP) L3 F/T product, Advanced Microwave Scanning Radiometer 2 (AMSR2) F/T product and Making Earth System Data Records for Use in Research Environments (MEaSUREs) F/T product over different regions in China, including the Genhe area in Northeast China, the Saihanba area in North China, and the Qinghai-Tibet Plateau (QTP) area. The overall accuracy of F/T products assessed with the 5 cm depth soil temperature is 90.38% for SMAP, 90.23% for AMSR2 and 84.73% for MEaSUREs in cold and humid temperate forest climates and the plateau continental climate area (Genhe, Tianjun, and Qumalai) where permafrost is distributed, and 76.64% for SMAP, 83.67% for AMSR2 and 77.37% for MEaSUREs in the cold plateau mountain climate and plateau continental climate area (Saihanba and Chengduo) with frozen ground distributed seasonally, respectively. The overall accuracy is 69.05% for SMAP, 76.5% for AMSR2 and 81.4% for MEaSUREs in the Ngari, Naqu, and Dachaidan regions belonging to arid and semi-arid climates. It can be seen that SMAP and AMSR2 achieve the best performance in the distributed permafrost area, the second-best performance in the seasonal distributed permafrost area, but the worst performance in the areas with arid and semi-arid climate types due to inconsistent F/T signals between water with small changes and temperature with apparent changes during the F/T transition. The MEaSUREs product showed almost the same performance in different regions, indicating that it was less affected by climate types and the distribution of frozen soil than SMAP and AMSR2 products. SMAP F/T product detected by L-band with long penetration and AMSR2 F/T product calibrated with 5 cm soil temperature could represent the 5 cm F/T, but the MEaSUREs F/T product was more likely to describe the surface F/T state due to calibrated with air temperature and the short penetration of 36.5 GHz. In mid-low latitude areas (Tianjun and Qumalai) with a short duration of snow cover days and a fast snowmelt, the effect of snow melting on F/T products was negligible. Moreover, the spring snowmelt affects the three F/T products in Chengduo, but the SMAP product is not affected by the winter snowmelt, whereas the AMSR2 product is affected by the winter snowmelt.