Glaciers retreating due to global warming create important new habitats, particularly suitable for studying ecosystem development where nitrogen is a limiting factor. Nitrogen availability mainly results from microbial decomposition and transformation processes, including nitrification. AOA and AOB perform the first and rate-limiting step of nitrification. Investigating the abundance and diversity of AOA and AOB is essential for understanding early ecosystem development. The dynamics of AOA and AOB community structure along a soil chronosequence in Tianshan No. 1 Glacier foreland were analyzed using qPCR and clone library methods. The results consistently showed low quantities of both AOA and AOB throughout the chronosequence. Initially, the copy numbers of AOB were higher than those of AOA, but they decreased in later stages. The AOB community was dominated by Nitrosospira cluster ME, while the AOA community was dominated by the soil and sediment 1. Both communities were potentially connected to supra- and subglacial microbial communities during early stages. Correlation analysis revealed a significant positive correlation between the ratios of AOA and AOB with soil ammonium and total nitrogen levels. These results suggest that variations in abundance and diversity of AOA and AOB along the chronosequences were influenced by ammonium availability during glacier retreat.
Accompanying the seasonal soil freeze-thaw cycle, microbial decomposition of litter exhibited different dynamic response to various snow thicknesses. In this study, we used real-time qPCR to investigate the abundance of bacteria, archaea, ammonia-oxidizing archaea (AOA) and bacteria (AOB), and the amoA gene transcripts, during the decomposition of dwarf bamboo (Fargesia nitida) litter under different snow patches at various snow-cover stages in an alpine forest on the eastern Tibetan Plateau in China. The effects of snow thickness were significant, with thicker snow patches resulting in higher microbial abundance and the amoA gene transcripts, while the degree of the effects were different. Compared with AOB, AOA were more abundant on the majority of sampling dates during the freeze-thaw period, and as well as their amoA gene transcripts. AOA are more persistent and abundant than AOB, and the higher AOA/AOB ratios were observed clearly in shrub litter and continued to decrease as the snow thickness increased, meanwhile gradually increased under uniform snow thickness over time. Our results suggested that the reduced seasonal snow cover and shortened freeze-thaw cycle periods caused by winter warming would significantly affect the ammonia oxidizers particularly tied to the ammonia oxidation process, and then could contribute to N cycle as related to litter in alpine forest ecosystems.