Objective Xinjiang, recognized as a crucial coal resource area and strategic reserve in China, possesses abundant coal resources. The Zhundong coalfield, a large-scale open-pit mining area within this region, significantly contributes to increased concentrations of light-absorbing aerosols due to its coal production activities and associated industrial processes. These activities also produce substantial amounts of black carbon (BC), which, through atmospheric transport, mixes with snow and ice, influencing glacier ablation in the Tianshan Mountains. While previous studies on the Zhundong coalfield have predominantly concentrated on the ecological pollution resulting from mining activities, they have overlooked the implications for climate and radiative forcing in the area. In this context, it is crucial to employ satellite remote sensing technology to analyze and assess the optical properties and radiative forcing effects of light-absorbing aerosols in the Zhundong coalfield region. Such an approach is significant for understanding the regional environmental and climatic impacts associated with the development of open-pit coal resources in the arid regions of western China. Methods We investigate the temporal and spatial characteristics of aerosol optical depth (AOD) in the Zhundong coalfield by utilizing MODIS aerosol product (MOD04_L2) data spanning from 2005 to 2020. To simulate aerosol particle size information, a Mie scattering model is employed under the core-shell assumption. An uncertainty interval of 0.03 is selected to estimate the possible range of particle sizes within each grid, constrained by maximum and minimum values. The inter of these constraints is then used to calculate the optical parameters for various particle size combinations. Additionally, the influence of sand and dust aerosols is considered by setting the single scattering albedo (SSA) range for these aerosols between 0.93 and 0.96. The simulated extinction coefficient (sigma(ext)) is used as a threshold value; any portion smaller than this threshold is excluded to quantify the concentration of local BC columns. Finally, the radiative forcing effect of light-absorbing aerosols in the Zhundong coalfield over the past decade is evaluated using the SBDART radiative transfer model. Results and Discussions The AOD in the Zhundong coalfield exhibited pronounced spatial heterogeneity from 2005 to 2020, with high AOD values predominantly concentrated in the mining area and its surrounding regions (Fig. 2). Seasonal variations reveal the highest concentrations in spring and winter, followed by fall, with the lowest levels observed in summer. During spring and winter, AOD values generally exceed 0.15, except in certain desert areas. Interannual fluctuations in AOD are frequent, marked by significant turning points in 2010, 2012, and 2017 (Fig. 3), which indicates that coal production, energy restructuring, and capacity reduction policies have a significant effect on air quality in mining regions. The inter-monthly variation displays a distinct U pattern (Fig. 3), with AOD peaking at 0.27 in February, which highlights the substantial influence of anthropogenic activities on regional air quality. Dusty weather in spring emerges as a dominant factor. Overall, the temporal variation in AOD in the Zhundong coalfield reflects the combined effects of natural factors and human activities. In the Wucaiwan and Dajing mining areas, the range of BC number density is (1?3)x10(18) grid(-1) (Fig. 6). In 2012, against the backdrop of China's coal economic performance, open-pit mining was less affected by the decline in production growth due to its larger production capacity and lower costs, influenced by mining methods, climatic conditions, and economic activities. In contrast, shaft mining is more heavily affected by safety risks and environmental constraints, which may lead to production limitations, especially under strengthened policy and regulatory measures. As a result, there are greater fluctuations in BC number density in the Dajing mining area (Fig. 6). The range of BC number density is 20?40 kg/grid, with seasonal variations largely consistent, although peak months differed. This suggests that BC mass concentration is closely related to particle aging and size (Fig. 7). Radiative forcing values at the top of the atmosphere, at the surface, and within the atmosphere showed varying degrees of decrease between 2011 and 2017, followed by a gradual increase. This suggests that reducing emissions of light-absorbing aerosols from mining sites can effectively lower regional radiative forcing values in the context of reduced coal production (Fig. 10). Radiative forcing values are higher in March and April during spring, when BC is aged and mixed with other aerosol components through mutual encapsulation, which results in more complex microphysical-chemical properties. This process enhances the absorption capacity of BC for both short- and long-wave radiations (Fig. 10). Conclusions We analyze the overall change in AOD in the Zhundong coalfield from 2005 to 2020 using the MODIS aerosol dataset. By integrating a meter scattering model to simulate optical parameters under various particle size combinations and constraining these simulations with single scattering albedo (SSA) observations from MODIS, this approach allows us to determine the eligible particle size information and optical parameters, enabling the calculation of BC mass concentration within the atmospheric column of the Zhundong coalfield. Subsequently, the area's radiative forcing is estimated using the SBDART radiative transfer model. The findings reveal several key insights. 1) The changes in AOD are closely linked to policy implementation and economic activities within the coal mining area. Interannual variations indicate that AOD peaked in 2012 and subsequently declined, which suggests that policies and economic activities significantly affect AOD levels. Seasonally, AOD is higher in spring and winter and lower in summer. The unique topographic and meteorological conditions facilitate the transport of BC from the mining area to other regions, which highlights the combined effects of seasonal meteorological conditions and human activities. 2) The column concentration of light-absorbing aerosols in the coal mine area is affected by both anthropogenic activities and meteorological conditions, particularly during sandy and dusty weather. A comparison of column concentrations between the Wucaiwan and Dajing mines shows that open-pit mining adapts more effectively in 2012, given the context of China's coal economic operations, whereas shaft mining may face greater challenges. 3) By examining the changes in AOD and light-absorbing aerosols, it is evident that reducing emissions of light-absorbing aerosols from coal mining areas can effectively decrease regional radiative forcing values in the short term. Inter-monthly variations reveal that atmospheric radiative forcing trends differ from those at the surface and the top of the atmosphere, with the latter two being closely related to the optical properties of light-absorbing aerosols. In spring, the frequent occurrence of sand and dust facilitates the mixing of BC with other substances, forming light-absorbing aerosols with a core-shell structure. This significantly enhances the light-absorbing capacity of BC, thereby increasing radiative forcing.
Brown carbon (BrC) has been recognized as an important light-absorbing carbonaceous aerosol, yet understanding of its influence on regional climate and air quality has been lacking, mainly due to the ignorance of regional coupled meteorology-chemistry models. Besides, assumptions about its emissions in previous explorations might cause large uncertainties in estimates. Here, we implemented a BrC module into the WRF-Chem model that considers source-dependent absorption and avoids uncertainties caused by assumptions about emission intensities. To our best knowledge, we made the first effort to consider BrC in a regional coupled model. We then applied the developed model to explore the impacts of BrC absorption on radiative forcing, regional climate, and air quality in East Asia. We found notable increases in aerosol absorption optical depth (AAOD) in areas with high OC concentrations. The most intense forcing of BrC absorption occurs in autumn over Southeast Asia, and values could reach around 4 W m(-2). The intensified atmospheric absorption modified surface energy balance, resulting in subsequent declines in surface temperature, heat flux, boundary layer height, and turbulence exchanging rates. These changes in meteorological variables additionally modified near-surface dispersion and photochemical conditions, leading to changes of PM2.5 and O-3 concentrations. These findings indicate that BrC could exert important influence in specific regions and time periods. A more in-depth understanding could be achieved later with the developed model.
Objective In coal mining regions, extensive coal dust is generated during mining, transportation, and storage, coupled with substantial black carbon produced resulting from incomplete coal combustion in the industry chain. Over time, these materials form absorbable substances, evolving into core- shell aerosols with inorganic salt shells. These aerosols, including sulfate, nitrate, and water, exert significant climate impacts through direct and indirect radiation effects. The environmental and radiative forcing effects are substantial. Absorbing aerosol demonstrates strong solar radiation absorption across the ultraviolet to infrared spectrum. However, past studies primarily focus on their optical properties in visible and infrared bands, overlooking ultraviolet band absorption. Current research often assumes a lognormal particle size distribution for absorbing aerosols, neglecting variations in distribution and optical properties resulting from diverse emission scenarios. Therefore, a thorough analysis of absorbing aerosol optical properties at local scales is crucial. Quantitative assessments of particle size distribution, mixing state, and spatio-temporal variations are vital for elucidating the intricate interactions with boundary layer development, radiative forcing changes, and air pollution. Methods In our study conducted in the coal mining area of Changzhi City, Shanxi Province, various datasets are collected, including surface black carbon concentration, particle size distribution, and columnar aerosol optical depth (AOD). The investigation commenced with the utilization of the variance maximization method to categorize AOD data into distinct pollution events. Subsequent analysis involved evaluating the particle size distribution corresponding to different pollution degrees through probability density functions. The uncertainty of particle size for the desorption aerosol core and shell is then determined by integrating black carbon mass concentration data and particle size distribution information. These uncertainties are then used as input parameters to run the Mie scattering model based on the core- shell structure. This process results in the inversion of the multi- band optical characteristic parameters of absorbing aerosol in the coal mining area. The computations are carried out under both the assumption of a uniform distribution and a non- uniform distribution, representing different mixing degrees of aerosols. To complete the picture, the uncertainty interval for the single scattering albedo (SSA) of absorbing aerosol was constrained through the application of absorption & Aring;ngstr & ouml;m exponent (AAE) theory. This comprehensive approach provides a nuanced understanding of the complex dynamics of absorbing aerosol in the specific context of coal mining environments. Results and Discussions In the coal mining area, absorbing aerosols are influenced by emission sources, manifesting a particle size distribution divergent from the lognormal model. Under various pollution conditions, robust peaks are discernible in smaller particle size ranges (0.28 -0.3 mu m), with weaker peaks present around 0.58 -0.65 mu m. The relative proportion between the two peaks fluctuates in tandem with the pollution severity (Fig. 3). Using the Mie scattering model, the optical characteristics of absorbing aerosol are inverted based on AOD information, black carbon mass concentration, and particle number concentration. Results indicate that under the assumption of a uniform distribution (Fig. 4), the average size of the core particles at 0.28, 0.58, and 0.7 mu m is relatively low, leading to corresponding patterns in SSA with changes in core particle size. Additionally, the average core particle size shows no significant variation with changes in wavelength in different size ranges. SSA decreases with increasing wavelength, with greater fluctuations in the smaller particle size range (0.25-0.58 mu m) and more stable changes in the larger particle size range (0.58-1.6 mu m). Under this assumption, the AAE theory is found to be inapplicable. In the case of a non- uniform distribution (Fig. 5), SSA values exhibit a slow, followed by a gradual and then rapid increase in the shortwave region, while in the longwave region, SSA first rapidly increases and then gradually levels off. For shorter wavelengths (500 nm and above), AAE theory proves effective for absorbing aerosol with smaller particle sizes. For longer wavelengths (675 nm and above), AAE theory is applicable to absorbing aerosol with moderate particle sizes. However, for larger particles such as coal dust, AAE theory is not suitable. It is noteworthy that, under both assumptions, the inversion results of SSA values in the longwave spectrum (such as 870 and 936 nm) are relatively lower compared to the shortwave spectrum (such as 440 and 500 nm). This discrepancy will lead to an underestimation of emission quantities. Conclusions We conduct on- site observations in the coal mining area of Changzhi City, Shanxi Province, aiming to capture the variation characteristics of AOD, particle concentration, and black carbon mass concentration. Utilizing the Mie scattering model based on the core- shell hypothesis, we simulate the SSA of absorbing aerosol under two different mixing states. Additionally, we calculate the optical variations of absorbing aerosol constrained by the AAE. The research findings reveal the following: 1) The particle size distribution of absorbing aerosol in the coal mining area deviates from the assumptions made in previous studies, which typically assumed single or double- peaked distributions. Influenced by emission sources, the characteristics vary under different pollution conditions. Smaller particles predominantly originate from the incomplete combustion of coal in local power plants and coking factories, producing black carbon. Larger particles stem from the aging processes of black carbon in the atmospheric environment and coal dust generated during coal transportation. 2) Comparison of the SSA variations under different mixing states simulated by the two hypotheses indicates that particle size, mixing state, and spectral range significantly impact the SSA of absorbing. In contrast to previous studies using the infrared spectrum, the present investigation reveals higher SSA values in the ultraviolet and visible light spectrum, suggesting a potential underestimation of black carbon emissions. 3) The AAE theory is applicable only to certain particle size ranges in different spectral bands. For large- sized absorbing aerosol in the coal mining area, using the AAE theory to estimate SSA introduces uncertainty, and applying the AAE assumption across all particle size ranges leads to an underestimation of emissions. These findings underscore that the distribution characteristics of SSA in absorbing aerosol do not strictly adhere to the power- law relationship of the AAE index but are collectively determined by particle size distribution, mixing state, and spectral range.
Aerosol single-scattering albedo (SSA) is the most critical factor for the accurately calculating of aerosol radiative effects, however, the observation of vertical profiles of SSA is difficult to realize. Current assessments of aerosol radiative effects remain uncertain because of the lack of long-term, high-resolution vertical profiles of SSA observations. High-resolution SSA vertical profiles were observed in a semi-arid region of Northwest China during winter using a tethered balloon. The observed SSA vertical profiles were used to calculate the aerosol direct radiative forcing and radiative heating rates. Significant differences in the calculated radiative forcing were found (e.g., a 48.3% relative difference for the heating effect in the atmosphere at 14:00) between the observed SSA profiles and the constant assumption with SSA = 0.90. Diurnal variations in the vertical distribution of SSA decisively influenced direct radiative forcing of aerosols. Furthermore, high-resolution vertical profiles of absorbing aerosols and meteorological parameters provide robust observational evidence of the heating effect of an elevated absorbing aerosol layer. This study provides a more accurate calculation of aerosol radiative forcing using observed aerosol SSA profiles. The scarcity of single-scattering albedo (SSA) observations is the most critical factor limiting the accurate calculations of aerosol radiative effects. A tethered balloon platform was used to obtain long-term, high-resolution observations of the SSA and estimate aerosols' radiative effects. The relative differences in the heating rate and direct radiative forcing calculations using the observed SSA and a constant assumed SSA (i.e., ignoring the vertical distribution of absorbing aerosols) were quantified. The effects of diurnal variations in the vertical distribution of SSA on aerosol direct radiative forcing are summarized. This study has important scientific implications for assessing the radiative effects of aerosols in semi-arid regions, that are highly sensitive to climate change. Tethered balloon observations acquired high-resolution vertical aerosol single-scattering albedo (SSA) profiles The assumed SSA profiles caused a 48.3% relative error in radiative forcing in the atmosphere compared to the observed profiles at 14:00 A robust observational evidence of atmospheric heating by absorbing aerosols above the boundary layer was provided
Absorbing aerosols and their impact on the Indian monsoon system is highly complex and demands more scientific understanding. Our study using a chemistry-coupled regional climate model (RegCM 4.5) with idealized experiments observed that natural and anthropogenic absorbing aerosols (i.e., dust and carbonaceous aerosols) reduce monsoon precipitation in a seasonal time scale. More than 1 mm day(-1) decline in mean summertime rainfall was observed over parts of the central Indian region and Indo-Gangetic plane for dust aerosol. A substantial reduction in the land-sea pressure gradient and lower tropospheric moisture distribution were found to control the observed modulation in rainfall. Near-surface wind circulation responded distinctly to natural (dust) and anthropogenic (carbonaceous) aerosols. The dust forcing weakened the monsoon trough by creating an anomalous anticyclonic circulation. The Northern Arabian Sea acted as a moisture source for the carbonaceous aerosol forcing. Intraseasonal rainfall over central India appeared to have a sharp reduction for dust forcing during early June, with a moderate increase for carbonaceous aerosols. Such quantification is essential for understanding the impact of aerosol forcing on regional climate change and the water cycle and has implications for emissions management and mitigation policies.
Duringthe summer and winter periods of 2019-2020, we conductedsampling of fine mode ambient aerosols in the western Himalayan glacialregion (WHR; Thajiwas glacier, 2799 m asl), central Himalayan glacialregion (CHR; Gomukh glacier, 3415 m asl), and eastern Himalayan glacialregion (EHR; Zemu glacier, 2700 m asl). We evaluated the aerosol opticalproperties, which included the mass absorption coefficient, mass absorptionefficiency, mass scattering efficiency, absorption angstrom exponent,single scattering albedo, as well as their simple radiative forcingefficiencies. We observed the highest absorption in the near ultraviolet-visiblewavelength range (200-400 nm), with CHR showing the highestabsorption compared to the other two sites, WHR and EHR, respectively.Across the wavelength range of 200-1100 nm, the overall contributionof black carbon to light attenuation was greater than that of browncarbon. However, brown carbon dominated the absorption in the nearUV-visible wavelengths, providing evidence of its non-trivialpresence over the Himalayan region. Additionally, we observed a positiveradiative forcing (W/g), which leads to net warming at these sites.The findings of this ground-based study contribute to our understandingof the light-absorbing nature of carbonaceous aerosols and their impacton the Himalayan glacier regions.
Estimation of aerosol radiative forcing continues to suffer from large uncertainties, partially from a lack of observations of aerosol optical properties. Limited measurements of the atmospheric aerosol imaginary refractive index (iRI) have been made, especially in some of the world's most polluted regions. In this study, we measured aerosol optical and micro-physical properties at a regional site, Rohtak, India, representative of polluted cities in the Indo-Gangetic plains in northern India. The average PM2.5 measured during the campaign was 163 mu g/m(3) with a single-scatter albedo of 0.7, indicating the presence of strongly absorbing aerosol components. Measurements of aerosol absorption, scattering, and particle number size distributions were used to estimate the effective refractive index using an established Mie inversion technique. The calculated iRI was spectrally invariant in the visible region with values ranging between 0.076 and 0.145. Brown carbon absorption, estimated using an existing Mie optimization method, ranged 34-88 Mm(-1), with strongly absorbing mass absorption cross-sections (similar to 1.9 m(2)/g). Higher iRI were observed during periods with higher brown carbon absorption, which are likely directly emitted from combustion sources. Low volatility organic carbon fractions dominated during these periods, with likely persistence of atmospheric absorption. The iRI values are at the upper end of previously reported ranges of urban aerosol iRI. In a sensitivity analysis to measured parameters, the absorption had the dominant effect on estimated iRI. Measured single scatter albedos, were lower than those from climate model simulations over the region, demonstrating the need for intrinsic property measurements to evaluate and constrain climate models.
A comprehensive study on classifying the aerosol types and absorbing aerosol types, and quantifying the effect of absorbing aerosols on aerosol optical and radiative properties using four years (2015-2016, 2018-2019) of high-quality Aerosol Robotic Network (AERONET) datasets over Kanpur (urban) and Gandhi College (rural) in the Indo-Gangetic Plain (IGP) region is conducted on a seasonal scale, for the first time. Biomass burning (BB), urban-industrial, and mixed aerosol types are always present, whereas dust aerosol and mostly dust absorbing aerosol types are only present in pre-monsoon and monsoon seasons. During winter and post-monsoon seasons, BB aerosols andmostly black carbon (MBC) absorbing aerosols dominate, and the contribution of aerosol optical depth (AOD) and single scattering albedo (SSA) corresponding to MBC to total AOD and SSA are higher. SSA for MBC varies over a broader range due to mixing of BC with water-soluble aerosols. During pre-monsoon and monsoon seasons, mixing of dust with anthropogenic aerosols increases the amount of mixed aerosol type. Surface cooling and atmospheric heating efficiency for mixed aerosols are higher than MBC and dust aerosols due to enhancement in aerosol absorption over both locations. Seasonal analysis of aerosol radiative properties showed that during winter and post-monsoon, MBC absorbing aerosols are the major contributor in controlling/influencing the total aerosol radiative forcing (ARF) and heating rate (HR). During the other seasons, each absorbing aerosol type significantly influences ARF depending on their AOD and SSA values. In addition to Kanpur and Gandhi College, data from seven other AERONET sites located at Karachi, Lahore, Jaipur, Lumbini, Pokhara, Bhola, and Dhaka in South Asia are analysed to conduct a regional-scale examination of aerosol optical parameters and radiative effects due to different absorbing aerosol types. As the aerosol characteristics and trends are similar over these sites, the findings from such a regional-scale analysis can be an appropriate representative for the South Asian region. The regional analysis revealed that the annual mean atmospheric ARF (ARF(ATM)) and ARF efficiency (ARFE(ATM)), and HR are higher for MBC, followed by mixed and MD aerosols over South Asia due to higher AOD, and higher absorbing efficiency of MBC aerosols. In comparison, mixed aerosols exhibit higher ARF(ATM) over East Asia. This quantification of absorbing aerosol types over a global aerosol hotspot will be useful for an accurate quantification of climate impacts of aerosols.
Quantifying the concentration of absorbing aerosol is essential for pollution tracking and calculation of atmospheric radiative forcing. To quickly obtain absorbing aerosol optical depth (AAOD) with high-resolution and high-accuracy, the gradient boosted regression trees (GBRT) method based on the joint data from Ozone Monitoring Instrument (OMI), Moderate Resolution Imaging Spectro-Radiometer (MODIS), and AErosol RObotic NETwork (AERONET) is used for TROPOspheric Monitoring Instrument (TROPOMI). Compared with the ground-based data, the correlation coefficient of the results is greater than 0.6 and the difference is generally within +/- 0.04. Compared with OMI data, the underestimation has been greatly improved. By further restricting the impact factors, three valid conclusions can be drawn: 1) the model with more spatial difference information achieves better results than the model with more temporal difference information; 2) the training dataset with a high cloud fraction (0.1-0.4) can partly improve the performance of GBRT results; and 3) when aerosol optical depth (AOD) is less than 0.3, the perform of retrieved AAODs is still good by comparing with ground-based measurements. The novel finding is expected to contribute to regional and even urban anthropogenic pollution research.
This study employs a fully coupled meteorology-chemistry-snow model to investigate the impacts of light-absorbing particles (LAPs) on snow darkening in the Sierra Nevada. After comprehensive evaluation with spatially and temporally complete satellite retrievals, the model shows that LAPs in snow reduce snow albedo by 0.013 (0-0.045) in the Sierra Nevada during the ablation season (April-July), producing a midday mean radiative forcing of 4.5 W m(-2) which increases to 15-22 W m(-2) in July. LAPs in snow accelerate snow aging processes and reduce snow cover fraction, which doubles the albedo change and radiative forcing caused by LAPs. The impurity-induced snow darkening effects decrease snow water equivalent and snow depth by 20 and 70 mm in June in the Sierra Nevada bighorn sheep habitat. The earlier snowmelt reduces root-zone soil water content by 20%, deteriorating the forage productivity and playing a negative role in the survival of bighorn sheep.