Global climate change substantially influences vegetation spring phenology, that is, green-up date (GUD), in the northern permafrost region. Changes in GUD regulate ecosystem carbon uptake, further feeding back to local and regional climate systems. Extant studies mainly focused on the direct effects of climate factors, such as temperature, precipitation, and insolation; however, the responses of GUD to permafrost degradation caused by warming (i.e., indirect effects) remain elusive yet. In this study, we examined the impacts of permafrost degradation on GUD by analyzing the long-term trend of satellite-based GUD in relation to permafrost degradation measured by the start of thaw (SOT) and active layer thickness (ALT). We found significant trends of advancing GUD, SOT, and thickening ALT (p < 0.05), with a spatially averaged slope of -2.1 days decade(-1), -4.1 days decade(-1), and +1.1 cm decade(-1), respectively. Using partial correlation analyses, we found more than half of the regions with significantly negative correlations between spring temperature and GUD became nonsignificant after considering permafrost degradation. GUD exhibits dominant-positive (37.6% vs. 0.6%) and dominant-negative (1.8% vs. 35.1%) responses to SOT and ALT, respectively. Earlier SOT and thicker ALT would enhance soil water availability, thus alleviating water stress for vegetation green-up. Based on sensitivity analyses, permafrost degradation was the dominant factor controlling GUD variations in 41.7% of the regions, whereas only 19.6% of the regions were dominated by other climatic factors (i.e., temperature, precipitation, and insolation). Our results indicate that GUDs were more sensitive to permafrost degradation than direct climate change in spring among different vegetation types, especially in high latitudes. This study reveals the significant impacts of permafrost degradation on vegetation GUD and highlights the importance of permafrost status in better understanding spring phenological responses to future climate change.
To assess the direct impact of climate change on ice-wedge (IW) degradation, 16 sites in the Narsajuaq river valley (Nunavik, Canada) that were extensively studied between 1989 and 1991 were revisited in 2016, 2017 and 2018. In total, 109 pits were dug to record soil characteristics and IW shapes and depths. Changes in surface conditions were also noted using side-by-side comparisons of recent (2017) and older (1989-1991) land and aerial photographs. During the past 25 years, the active layer reached depths that were 1.2-3.4 times deeper than in 1991, which led to the widespread degradation of IWs in the valley. Whereas 94% of the IWs unearthed in 1991 showed multiple recent growth structures, only 13% of the 55 IWs unearthed in 2017 still had some upgrowth stages left. IW tops are now consistently deeper than the main stages of the IWs measured in 1991. In August 2017, however, about half of the IWs had ice veins connecting them to the base of the active layer, an indication that the recent cooling spell (2010 to present) in the region was enough to reactivate frost cracking and IW growth. This paper highlights how sensitive the Arctic soil system can be to short-term climate variations.
Forest fires have significantly impacted the permafrost environment, and many research programs looking at this have been undertaken at higher latitudes. However, their impacts have not yet been systematically studied and evaluated in the northern part of northeast China at mid-latitudes. This study simultaneously measured ecological and geocryological changes at various sites in the boreal forest at different stages after forest fires (chronosequence approach) in the northern Da Xing'anling (Hinggan) Mountains, Northeast China. We obtained results through field investigations, monitoring and observations, remote sensing interpretations, and laboratory tests. The results show that forest fires have resulted in a decreased Normalized Difference Vegetation Index (NDVI) and soil moisture contents in the active layer, increased active layer thickness (ALT) and ground temperatures, and the release of a large amount of C and N from the soils in the active layer and at shallow depths of permafrost. NDVI and species biodiversity have gradually increased in the years since forest fires. However, the vegetation has not fully recovered to the climax community structures and functions of the boreal forest ecosystems. For example, ground temperatures, ALT, and soil C and N contents have been slowly recovering in the 30years after the forest fires, but they have not yet been restored to pre-fire levels. This study provides important scientific bases for assessment of the impacts of forest fires on the boreal forest ecosystems in permafrost regions, environmental restoration and management, and changes in the carbon stock of soils at shallow (<3m) depths in the Da Xingan'ling Mountains in northeast China.
Qinghai-Tibet plateau (QTP) is closely related to global climate change, and it has undergone serious permafrost degradation due to global warming in the last decades. It is crucial to measure the active layer thickness (ALT) for characterizing and monitoring the permafrost degradation of QTP. In this paper, an ALT retrieval model based on ground subsidence derived from synthetic aperture radar interferometry (InSAR), land cover types, and groundwater information is proposed. In particular, the surface subsidence is retrieved using the time-series InSAR technique with TerraSAR-X ST mode images. Moreover, groundwater content models with different land covers are constructed based on multilayered assumptions and in situ data. By taking into account the groundwater content profile and land cover types, the ALT is retrieved from deformation with the full season cycle derived by InSAR technique. The experimental results in Beiluhe indicate that the estimated ALT is consistent with field-measured data. The estimated ALT map shows the difference between the alpine meadow and alpine desert areas, with mean ALT of approximately 1.5 m in alpine meadow area and approximately 3 m in alpine desert area. Our results demonstrate that the InSAR technique with high-resolution SAR images can be of great importance for the study of permafrost environments.
To better understand the ecological and hydrological responses to climatic and cryospheric changes, the spatiotemporal variations in the active layer thickness (ALT) need to be scrupulously studied. Based on more than 230 sites from the circumpolar active layer monitoring network, the spatiotemporal characteristics of the ALT across the northern hemisphere during 1990-2015 were investigated. Results indicate that the ALT exhibits substantial spatial variations across the northern hemisphere, ranging from approximately 30 cm in the arctic and subarctic regions to greater than 10 m in the mountainous permafrost regions at mid-latitudes. Regional averages of ALT are 48 cm in Alaska, 93 cm in Canada, 164 cm in the Nordic countries (including Greenland and Svalbard) and Switzerland, 330 cm in Mongolia, 476 cm in Kazakhstan, and 230 cm on the Qinghai-Tibetan Plateau (QTP), respectively. In Russia, the regional averages of ALT in European North, West Siberia, Central Siberia, Northeast Siberia, Chukotka, and Kamchatka are 110, 92, 69, 61, 53 and 60 cm, respectively. Increasing trends of ALT were not uniformly present in the observational records. Significant changes in the ALT were observed at 73 sites, approximately 43.2 % of the investigated 169 sites that are available for statistical analysis. Less than 25 % Alaskan sites and approximately 33 % Canadian sites showed significant increase in the ALT. On the QTP, almost all the sites showed significant ALT increases. Insignificant increase and even decrease in the ALT were observed in some parts of the northern hemisphere, e.g., Mongolia, parts of Alaska and Canada. The air and ground temperatures, vegetation, substrate, microreliefs, and soil moisture in particular, play decisive roles in the spatiotemporal variations in the ALT, but the relationships among each other are complicated and await further studies.