共检索到 3

Aerosols affect the radiative forcing of the global climate and cloud properties. Organic aerosols are among the most important, yet least understood, components of the sensitive Tibetan Plateau atmosphere. Here, the concentration of and the seasonal and diurnal variations in biomass burning and biogenic aerosols, and their contribution to organic aerosols in the inland Tibetan Plateau were investigated using molecular tracers. Biomass burning tracers including levoglucosan and its isomers, and aromatic acids showed higher concentrations during winter than in summer. Molecular tracers of primary and secondary biogenic organic aerosols were more abundant during summer than those in winter. Meteorological conditions were the main factors influencing diurnal variations in most organic molecular tracers during both seasons. According to the tracer-based method, we found that biogenic secondary organic aerosols (38.5 %) and fungal spores (14.4 %) were the two dominant contributors to organic aerosols during summer, whereas biomass burning (15.4 %) was an important aerosol source during winter at remote continental background site. Results from the positive matrix factor source apportionment also demonstrate the importance of biomass burning and biogenic aerosols in the inland Tibetan Plateau. During winter, the long-range transport of biomass burning from South Asia contributes to organic aerosols. In contrast, the precursors, biogenic secondary organic aerosols, and fungal spores from local emissions/long-range transport are the major sources of organic aerosols during summer. Further investigation is required to distinguish between local emissions and the long-range transport of organic aerosols. In-depth insights into the organic aerosols in the Tibetan Plateau are expected to reduce the uncertainties when evaluating aerosol effects on the climate system in the Tibetan Plateau.

期刊论文 2021-11-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2023.163797 ISSN: 0048-9697

Aerosol particles scatter and absorb solar radiation and affect the Earth's radiation budget. The aerosol particles are usually non-spherical in shape and inhomogeneous in chemical composition. For simplicity, these particles are approximated as homogeneous spheres/spheroids in radiative models and in retrieval algorithms of the ground and spaceborne observations. The lack of information on particle morphology (especially shape), chemical composition (that govern their spectral refractive indices) and most importantly internal structure (three dimensional spatial distribution of chemical species) lead to uncertainty in the numerical estimation of their optical and radiative properties. Here, we present a comprehensive assessment of the particles' volumetric composition. The particles were collected from Jaisalmer (arid environment) and Delhi (urban environment) of India and subjected to Focused Ion-Beam (FIB) coupled with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscope (EDS). Based on analysis of #2 particles from Jaisalmer, particles were observed to be composed of Fe, Ca, C, Al, Cu and Mg rich shell with Si and O rich core as opposed to those of Delhi particles (no #3) which were observed to be with Cu and S rich core and Hg, Ag, C, S and N rich shell. Based on the homogeneous sphere/spheroid assumption, conventional SEM-EDS and FIB-SEM-EDS results, different particle model shapes [single species homogeneous sphere (SP1) and spheroid (SPH1); multiple species homogeneously mixed sphere (SP2) and spheroid (SPH2); and core-shell (CS)] were considered for simulating their respective optical properties; SSA (Single Scattering Albedo) and g (Asymmetry parameter). The effect of internal structure on SSA was found to be prominent in particles having low value of the imaginary part of refractive index (k). While the same was observed to be low (nearly negligible) for the particle with the high value of k. The particles rich in copper are found to have high light absorbing property which causes positive radiative forcing.

期刊论文 2020-07-01 DOI: 10.1016/j.atmosenv.2020.117338 ISSN: 1352-2310

This paper provides an account of observed variations in Black carbon (BC) aerosol concentrations and their induced radiative forcing for the first time over Granada a measurement site in Southeastern Iberian Peninsula. Column-integrated BC concentrations were retrieved for the period 2005-2012. Monthly averages of BC concentrations (one standard deviation) ranged from higher values in January and December with 4.0 +/- 2.5 and 4 +/- 3 mg/m(2), respectively, to lower values in July and August with 1.6 +/- 1.2 and 2.0 +/- 0.5 mg/m(2), respectively. This reduction is not only observed in the average values, but also in the median, third and first quartiles. The average BC concentration in winter (3.8 +/- 0.6 mg/m(2)) was substantially higher than in summer (1.9 +/- 0.3 mg/m(2)), being the eight-year average of 2.9 +/- 0.9 mg/m(2). The reduction in the use of fossil fuels during the economic crisis contributed significantly to reduced atmospheric loadings of BC. According to our analysis this situation persisted until 2010. BC concentration values were analyzed in terms of air mass influence using cluster analysis. BC concentrations for cluster 1 (local and regional areas) showed high correlations with air masses frequency in winter and autumn. In these seasons BC sources were related to the intense road traffic and increased BC emissions from domestic heating. High BC concentrations were found in autumn just when air mass frequencies for cluster 3 (Mediterranean region) were more elevated, suggesting that air masses coming from that area transport biomass burning particles towards Granada. BC aerosol optical properties were retrieved from BC fraction using aerosol AERONET size volume distribution and Mie theory. A radiative transfer model (SBDART) was used to estimate the aerosol radiative forcing separately for composite aerosol (total aerosols) and exclusively for BC aerosols. The mean radiative forcing for composite aerosol was +23 +/- 6 W/m(2) (heating rate of +0.21 +/- 0.06 K/day) and +15 +/- 6 W/m(2) for BC aerosol (heating rate of +0.15 +/- 0.06 K/day). These values of radiative forcing and heating rate for BC aerosol represent-about 70% of their values for composite aerosol, which highlights the crucial role that BC aerosols play in modifying the radiation budget and climate. (C) 2017 Elsevier B.V. All rights reserved.

期刊论文 2017-07-15 DOI: 10.1016/j.atmosres.2017.03.007 ISSN: 0169-8095
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页