In recent years, microplastic (MPs) and pesticide pollution have become prominent issues in the field of soil pollution. This research endeavored to assess the impact of ultraviolet radiation (UV) on the characteristics of microplastics, as well as investigating the toxicological effect on earthworms (Eisenia fetida) when subjected to the dual stressors of microplastics and acetochlor (ACT). This research found that microplastics aged under UV were more prone to wear and tear in the environment, and produced more oxygen-containing functional groups. Chronic exposure experiments were conducted on ACT and aged-MPs. The results revealed that aged-MPs and ACT inhibited earthworm growth, induced oxidative stress, and caused damage to both the body cavity muscles and the intestinal lumen. Compared with individual exposure, combined exposure increased the oxidative products (superoxide dismutase (SOD) and catalase (CAT)) and altered the expression levels of related genes (TCTP and Hsp70) significantly. PE inflicted more significant harm to the earthworm intestinal tissue compared to PBAT. By 1H-NMR metabolomics, the investigation delved into the repercussions of PE and ACT on the metabolic pathways of earthworms. Exposure to ACT and PE can disrupt the stability of intestinal membranes stability, amino acid metabolism, neuronal function, oxidative stress and energy metabolism. Overall, the research revealed that combined exposure of MPs and ACT exacerbated the negative effects on earthworms significantly, and contributed valuable insights to environmental risk assessment of the combined toxicity of microplastics and pesticides.
As emerging pollutants, microplastics (MPs) pose serious threats to the terrestrial ecosystems, and the long-term presence of aged MPs in soil results in toxic effects on plant growth. However, the phytotoxicity mechanisms of aged MPs remain unclear. To understand the toxic effects of aged MPs and the response mechanism of lettuce plants, we selected polyethylene (PE) and polypropylene (PP) (commonly found in soil), and then studied the effects of the two phytotoxins on the soil-plant system before and after aging of the MPs. We found that aging enhanced the toxicity of the MPs to the plants. Compared with the original MPs-treatment group, aged PE and PP particles reduced plant biomasses by 26.19%-28.44% and 25.58%-26.13%, respectively, potentially due to the effects of aged MPs on the rhizosphere soil, which further inhibited nutrient absorption in lettuce. The metabolic response of lettuce to MPs was also different. Aged PE significantly attenuated malic acid and proline concentrations in lettuce, and the reduction in these two products inhibited photosynthesis, energy metabolism, and cellular homeostasis, thereby aggravating the damage caused by aged PE. Aged PP principally affected the metabolic pathways of phenylalanine, tyrosine and tryptophan, which was postulated to be the reason why aging enhanced the phytotoxicity of PP. This study provides new insights into the assessment of the toxic effects of MPs, as well as the environmental behavior and ecological risks of aged MPs.