Anabasis articulata, a medicinal plant used in Algeria to treat various ailments, also has significant pastoral and ecological value. Assessing its tolerance to temperature changes and soil salinity is crucial for understanding its potential use in the restoration of salt-affected lands in dry and semi-arid regions. The objectives of the present work were to determine the optimal temperature for seed germination of an important medicinal species and evaluate the degree of tolerance to saline and thermal stresses during germination and early seedling stages of Anabasis articulata. Seeds were collected from individuals of two populations of Anabasis articulata located in Sed Rahal (Djelfa-Algeria) and Oued N'sa (Ouargla-Algeria). Seeds were germinated at seven salinity levels (0, 100, 200, 300, 400, 500, and 600 mM) and incubated at eight temperatures (5,10, 15, 20, 25, 30, 35, 40, and 45 degrees C). The germination attributes studied were germination kinetics, germination percentage, germination rate, and the measurement of shoot and root lengths of seedlings. The statistical analysis revealed that salinity level and temperature variations significantly affected germination and post-germination characteristics. The highest germination percentages were obtained under non-saline conditions; salt stress delayed or limited the germination process and seedling growth. High temperatures (35-45 degrees C) have a more negative effect than lower temperatures (5-15 degrees C). Optimum temperatures range from 20 to 30 degrees C. At these temperatures, even at a saline concentration of 600 mM, 46% of the seeds were able to germinate for the Sed Rahal station and 21 % for the Oued N'sa station. Sed Rahal exhibited higher final germination percentages, germination rates, and seedling growth compared to Oued N'sa, particularly under moderate temperatures and lower salinity levels, demonstrating better resilience to salinity and temperature extremes. Sed Rahal seedlings exhibited more reduction in root length at low temperatures, while Oued N'sa seedlings showed more reduction in shoot length at high temperatures. The results demonstrate that this species possesses significant ecological adaptation in germination and seedling stages, making it suitable for the restoration of damaged ecosystems and marginal areas.