The increasing production of waste glass fiber reinforced polymer (GFRP) is causing severe environmental pollution, highlighting the need for an effective treatment method. This study explores recycling waste GFRP powder to substitute ground granulated blast furnace slag (GGBS) in synthesizing geopolymers, aiming to rapidly stabilize clayey soil. The impact of GFRP powder replacement, alkali solution concentration, alkaline activator/precursor (A/P) ratio, and binder content on the geomechanical properties and permeability of stabilized soil was thoroughly examined. The findings revealed that replacing GFRP powder from 20 wt% to 40 wt% lowered the unconfined compressive strength (UCS). However, soil stabilized with 30 wt% GFRP powder displayed the highest shear strength. This indicates that the incorporation of an appropriate amount of GFRP powder elevates clay cohesion. Furthermore, an increase in GFRP powder replacement improved permeability coefficient in the early stages, with minimal impact observed after 28 days. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis revealed a microstructural evolution of the stabilized soil, transitioning from a porous to a denser, more homogeneous composition over the curing period, which can be attributed to the formation of cluster gels enveloping the soil particles. Life cycle assessment (LCA) analysis indicated that the GFRP powder/GGBS geopolymer presents an alternative option to traditional Ordinary Portland Cement (OPC) binder, featuring a global warming potential (GWP)/strength ratio reduction of 6 %-40 %. This research offers a practical solution for effectively utilizing GFRP waste in a sustainable manner, with minimal energy consumption and pollution, thereby contributing to the sustainable development of soil stabilization.
The importance of physical, chemical, and mineralogical properties in selecting soils stabilized by activated natural pozzolan (ANP) was demonstrated. Five soil banks were identified, and two were selected: B1Z due to its SiO2 content and the presence of Montmorillonite and B3M for its granulometry and plasticity. Electrical con- ductivity (EC) was measured to monitor reactivity by testing two stabilizers, ANP and lime. Soils with 2.5% ANP exhibited higher EC than those with 10% lime. Compressive strength (CS) was analyzed. Soils with 10% ANP recorded higher CS than those with lime. Chemical and mineralogical properties were more relevant than physical ones in selecting soils stabilized through ANP.