共检索到 6

This study shows the impact of black carbon (BC) aerosol atmospheric rivers (AAR) on the Antarctic Sea ice retreat. We detect that a higher number of BC AARs arrived in the Antarctic region due to increased anthropogenic wildfire activities in 2019 in the Amazon compared to 2018. Our analyses suggest that the BC AARs led to a reduction in the sea ice albedo, increased the amount of sunlight absorbed at the surface, and a significant reduction of sea ice over the Weddell, Ross Sea (Ross), and Indian Ocean (IO) regions in 2019. The Weddell region experienced the largest amount of sea ice retreat (similar to 33,000 km(2)) during the presence of BC AARs as compared to similar to 13,000 km(2) during non-BC days. We used a suite of data science techniques, including random forest, elastic net regression, matrix profile, canonical correlations, and causal discovery analyses, to discover the effects and validate them. Random forest, elastic net regression, and causal discovery analyses show that the shortwave upward radiative flux or the reflected sunlight, temperature, and longwave upward energy from the earth are the most important features that affect sea ice extent. Canonical correlation analysis confirms that aerosol optical depth is negatively correlated with albedo, positively correlated with shortwave energy absorbed at the surface, and negatively correlated with Sea Ice Extent. The relationship is stronger in 2019 than in 2018. This study also employs the matrix profile and convolution operation of the Convolution Neural Network (CNN) to detect anomalous events in sea ice loss. These methods show that a higher amount of anomalous melting events were detected over the Weddell and Ross regions. Impact Statement Sea ice protects ice sheets, which are melting at a very high rate to raise the sea level. In addition to global warming, this study is indicative that black carbon aerosols transported from anthropogenic wildfire events, such as from the Amazon, darken the snow, reduce their reflectance, increase the absorption of solar energy incident on the surface, and exacerbate the sea ice retreat. Thus, this study points out that anthropogenic wildfire impacts far away from a region can have a severe impact on sea ice and ice sheets over the Antarctic which has a sea level rise potential of 60 m. Our study shows that only over the Weddell region, sea ice retreat was 20,000 km(2) higher during the presence of BC transport events than other days in 2019.

期刊论文 2025-01-01 DOI: 10.1017/eds.2025.1

Wood density (WD) is a key functional trait for its importance in tree performance and in biomass calculations of forests. Yet, the variation of WD among different woody tree parts, how this varies across ecosystems, and how this influences estimates of forest carbon stocks remains little understood, particularly for diverse tropical forests such as the Amazon. We assembled a dataset on stem and twig wood density from 119 tree species in three different Amazonian ecosystem types that differ considerably in soil nutrition and flooding: non-flooded forest (Terra Firme), white-water floodplain forest (V & aacute;rzea) and black-water floodplain forest (Igap & oacute;) to investigate (i) variation of stem and twig wood density across ecosystems, (ii) the relationships between stem and twig wood density and how these relationships vary across ecosystems. Wood density varied substantially across ecosystems. V & aacute;rzea species showed lower mean WD for stems compared to Terra firme, while Igap & oacute; species showed higher WD for twigs compared to the other ecosystems. Twig and stem wood density were positively related (R2adj = 0.47) with similarly increasing rates across ecosystems, although average WD values differed between Terra firme and Igap & oacute;. For any given twig density, stem density tends to be lower in floodplain environments but higher in Terra firme, a habitat-specific pattern of wood density variation within trees that may emerge from differences in the function of stem and twig wood for growth and survival in ecologically differentiated environments. Our results show how ecosystem has strong impacts on how trees allocate resources to different woody tissues, suggesting contrasting ecological strategies linked to ecosystem constraints. Our results suggest that greater consideration of the variation of WD within trees and how these changes across ecosystems might lead to more accurate estimates of above-ground biomass in Amazonia.Read the free Plain Language Summary for this article on the Journal blog. A densidade da madeira (WD) & eacute; um tra & ccedil;o funcional chave devido a sua import & acirc;ncia na performance das & aacute;rvores e para os c & aacute;lculos de biomassa em florestas. Entretanto, pouco se conhece sobre a varia & ccedil;& atilde;o da WD entre diferentes partes das plantas, se tal varia & ccedil;& atilde;o muda entre ecossistemas, e como isto influencia as estimativas de estoque de carbono, principalmente em florestas tropicais muito diversas como a Amaz & ocirc;nia. N & oacute;s utilizamos um conjunto de dados de densidade da madeira do tronco e do ramo de 119 esp & eacute;cies de & aacute;rvores de tr & ecirc;s tipos de ecossistemas amaz & ocirc;nicos: florestas de terra firme, florestas alag & aacute;veis de & aacute;guas brancas (V & aacute;rzea) e florestas alag & aacute;veis de & aacute;guas pretas (Igap & oacute;s) e investigamos (i) a variabilidade da densidade da madeira do tronco e do ramo entre ecossistemas, (ii) e a rela & ccedil;& atilde;o entre a densidade da madeira do tronco e a do ramo, e como esta rela & ccedil;& atilde;o varia entre os ecossistemas. A densidade da madeira variou consideravelmente entre os ecossistemas. As esp & eacute;cies de V & aacute;rzea tiveram WD m & eacute;dia do tronco menor comparada a Terra firme, enquanto as esp & eacute;cies de Igap & oacute; tiveram WD m & eacute;dia do ramo maior comparada aos outros ecossistemas. A densidade do ramo e do tronco tiveram correla & ccedil;& atilde;o positiva (R(2)adj = 0.47) e taxas de aumento similares entre os ecossistemas, mas com diferen & ccedil;a nos valores m & eacute;dios de densidade entre Terra firme e Igap & oacute;. Para um dado valor de WD do ramo, a WD do tronco tende a ser menor nas florestas alag & aacute;veis, por & eacute;m maior na Terra firme, um padr & atilde;o de varia & ccedil;& atilde;o na densidade das & aacute;rvores espec & iacute;fico do habitat, que pode surgir de diferen & ccedil;as nas fun & ccedil;& otilde;es do tronco e do ramo para o crescimento e sobreviv & ecirc;ncia das esp & eacute;cies em ambientes ecologicamente distintos. N & oacute;s mostramos como os ecossistemas impactam a aloca & ccedil;& atilde;o de recursos das & aacute;rvores em diferentes tecidos da madeira, sugerindo a exist & ecirc;ncia de estrat & eacute;gias ecol & oacute;gica contrastantes associadas as restri & ccedil;& otilde;es ambientais. Nossos resultados sugerem que considerar a varia & ccedil;& atilde;o da WD de uma & aacute;rvore e como tal varia & ccedil;& atilde;o muda entre ecossistemas pode propiciar estimativas mais acuradas de biomassa na Amaz & ocirc;nia. Read the free Plain Language Summary for this article on the Journal blog.image

期刊论文 2024-07-01 DOI: 10.1111/1365-2435.14572 ISSN: 0269-8463

Artisanal mining is intensely carried out in developing countries, including Brazil and especially in the Amazon. This method of mineral exploration generally does not employ mitigation techniques for potential damages and can lead to various environmental problems and risks to human health. The objectives of this study were to quantify the concentrations of rare earth elements (REEs) and estimate the environmental and human health risks in cassiterite and monazite artisanal mining areas in the southeastern Amazon, as well as to understand the dynamics of this risk over time after exploitation. A total of 35 samples of wastes classified as overburden and tailings in active areas, as well as in areas deactivated for one and ten years were collected. Samples were also collected in a forest area considered as a reference site. The concentrations of REEs were quantified using alkaline fusion and ICP-MS. The results were used to calculate pollution indices and environmental and human health risks. REEs showed higher concentrations in anthropized areas. Pollution and environmental risk levels were higher in areas deactivated for one year, with considerable contamination factors for Gd and Sm and significant to extreme enrichment factors for Sc. Human health risks were low (< 1) in all studied areas. The results indicate that artisanal mining of cassiterite and monazite has the potential to promote contamination and enrichment by REEs.

期刊论文 2024-06-01 DOI: 10.1007/s00267-024-01964-8 ISSN: 0364-152X

Gold mining has been increasing in Brazil and worldwide since 2000, causing negative effects on the environment and surrounding communities due to deforestation of open mines and the degradation of soil and rivers. This activity is historically important in the northern Brazilian state of Mato Grosso, Southern Amazon, but integrated studies are lacking. The current research sought to map areas of active alluvial gold mining in this region from 2009 to 2019, relating it to fluctuations in the national gold market as a tool for inspection, prevention and mitigation of related environmental damage. The study was carried out by remote sensing with LANDSAT and IRS satellite images in six stages, ranging from the survey of gold mines found in loco to the analysis of the relationship between the evolution of exploited areas and the price of gold. Eight mining zones were identified. The exploited areas were dimensioned by year and mining zone, indicating an overall 195% growth. This growth was not homogeneous among the mining zones. The true price per gram of gold increased by 56.62% during the study period. Mining fronts have approached and/or encroached on conservation units and indigenous lands. The relationship between price variation and the area exploited was significant and positive in the eight zones (alpha=0.05). This was the first detailed mapping of gold mines at the regional level in eleven years to support effective public policies in overcoming persistent socio-environmental conflicts related to the activity.

期刊论文 2024-01-01 DOI: 10.31413/nat.v12i4.18489 ISSN: 2318-7670

An extreme biomass burning event occurred in the Amazonian rainforest from July through September 2019 due to the extensive wildfires used to clear the land, which allowed for more significant forest burning than previously occurred. In this study, we reclustered the clear-sky ambient aerosols to adapt the black carbon (BC) aerosol retrieval algorithm to Amazonia. This not only isolated the volumetric fraction of BC (f(bc)) from moderate-resolution imaging spectroradiometer (MODIS) aerosol data, but also facilitated the use of aerosol mixing and scattering models to estimate the absorption properties of smoke plumes. The retrieved MODIS aerosol dataset provided a space perspective on characterizing the aerosol changes and trends of the 2019 pollution event. A very high aerosol optical depth (AOD) was found to affect the source areas continuously, with higher and thus stronger aerosol absorption. These pollutants also affected the atmosphere downwind due to the transport of air masses. In addition, properties of aerosols emitted from the 2019 Amazonian wildfire events visualized a significant year-to-year enhancement, with the averaged AOD at 550 nm increased by 150%. A 200% increase in the aerosol-absorption optical depth (AAOD) at 550 nm was recognized due to the low single-scattering albedo (SSA) caused by the explosive BC emissions during the pollution peak. Further simulations of aerosol radiative forcing (ARF) showed that the biomass-burning aerosols emitted during the extreme Amazonian wildfires event in 2019 forced a significant change in the radiative balance, which not only produced greater heating of the atmospheric column through strong absorption of BC, but also reduced the radiation reaching the top-of-atmosphere (TOA) and surface level. The negative radiative forcing at the TOA and surface level, as well as the positive radiative forcing in the atmosphere, were elevated by similar to 30% across the whole of South America compared to 2018. These radiative effects of the absorbing aerosol could have the ability to accelerate the deterioration cycle of drought and fire over the Amazonian rainforest.

期刊论文 2022-05-01 DOI: 10.3390/rs14092080

Biomass burning is a huge source of atmospheric aerosols and is poorly understood leading to large uncertainties in estimates of radiative forcing of climate. Aerosols have both a direct effect on climate by reflecting and absorbing solar radiation and an indirect effect by acting as cloud condensation nuclei (CCN) and ice nuclei (IN). Biomass burning aerosols are produced from burning of vegetation with the vast majority occurring in the tropics. This research presents data collected during the aircraft campaign of the South American Biomass Burning Analysis (SAMBBA) project during September and October 2012. A smouldering rainforest fire and a flaming savannah-like fire were selected for in-depth case studies of the atmospheric plume constituents and provide a comparison between the two fire types. The physiochemical characterization of the two plumes are identified, with preliminary results showing a significant difference in the black carbon concentration of the two plumes; 6 mu g m(-3) for the smouldering rainforest fire and 50 mu g m(-3) for the flaming savannah-like fire. However, organic matter concentrations were similar, peaking at 5mg m(-3). Analysis of the gas phase data and calculations of emission ratios (ER) and modified combustion efficiencies (MCE) will be presented together with an analysis of black carbon mixing state using data from a single particle soot photometer and organic aerosol composition.

期刊论文 2013-01-01 DOI: 10.1063/1.4803342 ISSN: 0094-243X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页