The degradation of near-surface permafrost under ongoing climate change on the Qinghai-Tibet Plateau (QTP) is of growing concern due to its impacts on geomorphological and ecological processes, as well as human activities. There is an increased need for an in-depth understanding of the evolution of permafrost temperature (Ttop) and active-layer thickness (ALT) at a fine scale on the QTP under climate change. This study evaluated the permafrost thermal development over the QTP for the period 1980-2100 at a 1 km(2) scale using a physically analytical model accounting for both climatic and local environmental factors based on multi-source data. The model results were validated against thermal borehole measurements and baseline maps. The modeled current (2001-2018) permafrost area (Ttop <= 0 degrees C) covers 1.42 x 106 km(2) (ca. 56.1% of the QTP land area), 10.1% of which thawed over the historical period 1981-2000. To assess how the ground thermal regime could develop in the future, we utilized the multi-model ensemble mean of downscaled outputs from eight climate models under three Shared Socio-economic Pathways (i.e., SSP126, 245, and 585) in CMIP6 to force the permafrost model. Model results suggest that the current (2001-2018) permafrost extent is likely to dramatically contract in the future period (2021-2100), as indicated by consistent Ttop warming and ALT increasing due to climate changing. About 26.9%, 59.9%, 80.1% of the current permafrost is likely to disappear by the end of the 21st century under SSP126, SSP245, and SSP585 scenarios, respectively. The simulation results may further provide new opportunities to assess the future impacts of climate warming on environments and engineering development over the QTP.
A physically based one-dimensional sharp-interface model of active layer evolution and permafrost thaw is presented. This computationally efficient, semianalytical, nonequilibrium solution to soil freeze-thaw problems in partially saturated media is proposed as a component of hydrological models to describe seasonal ground ice, active layer evolution, and changes in permafrost temperature and extent. The model is developed and validated against the analytical Stefan solution and a finite volume coupled heat and mass transfer model of freeze-thaw in unsaturated porous media. Unlike analytic models, the interface model provides a nonequilibrium solution to the heat equation while permitting a wide range of temporally variable boundary conditions and supporting the simulation of multiple interfaces between frozen and unfrozen soils. The model is implemented for use in discontinuous permafrost peatlands where soil properties are highly dependent on soil ice content and infiltration capacity is high. It is demonstrated that the model is suitable for the representation of variably saturated active layer and permafrost evolution in cases both with and without a talik.