共检索到 2

The role of atmospheric aerosols in earth's radiative balance is crucial. A thorough knowledge about the spectral optical properties of various types of aerosols is necessary to quantify the net radiative forcing produced by aerosol-light interactions. In this study, we exploited an open-source inverse algorithm based on the Python-PyMieScatt survey iteration method, to retrieve the wavelength dependent Mie-equivalent complex refractive indices of ambient aerosols. This method was verified by obtaining the broadband complex refractive indices of monodisperse polystyrene latex spheres and polydisperse common salt aerosols, using laboratory data collected with a supercontinuum broadband cavity enhanced extinction spectrometer operating in the 420-540 nm wavelength range. Field measurements of ambient aerosol were conducted using a similar cavity enhanced extinction spectrometer (IBBCEES) operating in the wavelength range of 400-550 nm, a multi-wavelength aethalometer, and a scanning mobility particle sizer, in Changzhou city, People's Republic of China. The absorption coefficients for the entire wavelength range were retrieved using the absorption Angstrom exponents calculated from a pair of measured absorption coefficients at known wavelengths. The survey iteration method takes scattering and absorption coefficients, wavelength, and size distributions as inputs; and it calculates the Mie-equivalent wavelength dependent complex refractive index (RI = n +/- ik) and estimated errors. The retrieved field RI values ranged from 1.66 <= n <= 1.80 to 1.65 <= n <= 1.86 and from 0.036 <= k <= 0.038 to 0.062 <= k <= 0.067 in the wavelength range (400-550 nm), for low and high aerosol loading conditions, respectively. Additionally, we derived the spectral dependencies of scattering and absorption coefficients along with the n and k Angstrom exponents (AE). The nAE and kAE estimated values suggest a stronger wavelength dependence for aerosol light scattering compared to absorption, and a decreasing trend for the spectrally dependent single scattering albedo during both loading conditions. The extremum of errors in the retrieved n and k values were quantified by considering (a) uncertainties in input parameters in the broad spectral region (400-550 nm), (b) using CAPS extinction values at 530 nm and (c) an estimated size distribution incorporating the coarse particles (at 530 nm).

期刊论文 2022-03-01 DOI: 10.1007/s41810-021-00128-z ISSN: 2510-375X

The composition and radiative forcing of light-absorbing brown carbon (BrC) aerosol remain poorly understood. Polycyclic aromatics (PAs) are BrC chromophores with fused benzene rings. Understanding the occurrence and significance of PAs in BrC is challenging due to a lack of standards for many PAs. In this study, we quantified polycyclic aromatic carbon (PAC), defined as the carbon of fused benzene rings, based on molecular markers (benzene polycarboxylic acids, BPCAs). Open biomass burning aerosols (OBBAs) of 22 rainforest plants were successively extracted with water and methanol for the analysis of water- and methanol-soluble PAC (WPAC and MPAC, respectively). PAC is an important fraction of water- and methanol-soluble organic carbon (WSOC and MSOC, respectively). WPAC/WSOC ranged from 0.03 to 0.18, and MPAC/MSOC was even higher (range: 0.16-0.80). The priority polycyclic aromatic hydrocarbons contributed less than 1% of MPAC. The mass absorption efficiency (MAE) of MSOC showed a strong linear correlation with MPAC/MSOC (r = 0.60-0.95, p < 0.01). The absorption Angstrom exponent (AAE) of methanol-soluble BrC showed a strong linear correlation with the degree of aromatic condensation of MPAC, which was described by the average number of carboxylic groups of BPCA (r = -0.79, p < 0.01). This result suggested that PAC was a key fraction determining the light absorption properties (i.e., light absorptivity and wavelength dependence) of methanol-soluble BrC in OBBAs.

期刊论文 2021-12-07 DOI: 10.1021/acs.est.1c06460 ISSN: 0013-936X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页