共检索到 11

Developing environmentally sustainable biodegradable multifunctional bio-composite films is an effective strategy for ensuring food chain security. This study initially prepared inclusion complexes (HP-(3-CD@EGCG) of Hydroxypropyl-(3-cyclodextrin (HP-(3-CD) and EGCG to ameliorate the stability of EGCG. Then HP-(3-CD@EGCG and different ratios of lignin were incorporated into gelatin solution through cross-linking polymerization to prepare an antioxidant, antibacterial and biodegradable composite film (HP-(3-CD@EGCG/Lignin/Gelatin). The results illustrated that HP-(3-CD crosslinked with EGCG and the encapsulation rate of EGCG reached 82.26%, and lignin increased the comprehensive characteristics of the gelatin-based composite films. The hydrophobicity of the composite films increased with increasing lignin concentration, reaching a water contact angle of 117.33 degrees; Furthermore, the mechanical characteristics and UV-light/water/oxygen barrier capacity also increased significantly. The composite films showed excellent antioxidant and antimicrobial properties, which also verified in the preservation of tomatoes and oranges, extending the shelf life of the fruit. It is worth mentioning that lignin has no effect on the biodegradability of the composite film, and the degradation rate in the soil reached 80% on the 10th day. In summary, biodegradable multifunctional environmentally friendly composite films based on gelatin and loaded with lignin and HP-(3-CD@EGCG inclusion complexes are anticipated to be applied in fruit and vegetable preservation.

期刊论文 2025-07-01 DOI: 10.1016/j.foodhyd.2025.111206 ISSN: 0268-005X

Cadmium (Cd) contamination in soil poses a significant environmental threat, reducing crop yields and compromising food safety. This study investigates the potential of selenium nanoparticles (Se-NPs) synthesized using wheat extract to mitigate Cd toxicity, reduce Cd uptake and mobility, and recover grain nutrient composition in wheat (Triticum aestivum L.). A pot experiment was conducted following a completely randomized design (CRD) with three replications. Treatments included control, four Se-NPs concentrations (10, 25, 50, and 100 ppm), four Cd stress levels (25, 50, 75, and 100 ppm), and their combined interactions. Various physiological, biochemical, and agronomic parameters were analyzed to assess the mitigation potential of Se-NPs against Cd toxicity in wheat. Se-NPs (36.77 nm) were characterized using FTIR, confirming functional groups for stabilization, XRD verifying crystallinity and size via the Scherrer Equation, SEM revealing spherical morphology, and EDX confirming selenium as the predominant element with minor trace elements. Under 50 ppm Cd stress, Se-NPs at 25 ppm reduced days to anthesis by 8.16 % and mitigated a 45.13 % decrease in plant height. Grain yield, which declined by 90.86 % under Cd stress, was restored by 90.86 % with 10 ppm Se-NPs. Additionally, Se-NPs improved thousand kernel weight by 32.71 %, counteracting a 25.92 % reduction due to Cd stress. Antioxidant enzyme activities, including SOD and CAT, increased by up to 333.79 % in roots with Se-NP treatment, while oxidative stress markers decreased by 28 %. Moreover, Se-NPs effectively mitigated Cd uptake and reduced its mobility within the plant. Grain protein content improved by 16.89 %, and carbohydrate levels were maintained at 4.61 % despite Cd exposure. These findings indicate that Se-NPs enhance crop resilience, supporting sustainable food production in Cd-contaminated environments.

期刊论文 2025-06-01 DOI: 10.1016/j.jtemb.2025.127644 ISSN: 0946-672X

This study focuses on the development of polyvinyl alcohol-chitosan-tragacanth gum composite films enriched with rosehip extract and seed oil for the packaging of active foods. The films were tested for their antioxidant activity, transparency, biodegradability, water vapor permeability and effectiveness in preserving sweet cherries under seasonal high temperature conditions. The addition of tragacanth, rosehip extract and rosehip seed oil significantly influenced the mechanical properties by increasing elongation at break and tensile strength. Films enriched with rosehip seed oil effectively reduced weight loss and preserved the sensory properties of the cherries, while films based on rosehip extract exhibited superior antioxidant properties with increased free radical scavenging activity. Biodegradability tests showed that all films degraded under soil conditions, with the rate of degradation depending on the concentration of tragacanth gum. The water vapor permeability results showed that the addition of rosehip extract and seed oil significantly reduced the water vapor permeability and improved the barrier properties of the films. Preservation tests showed that these films minimized titratable acidity, oxidative stress and moisture loss, effectively extending the shelf life of sweet cherries under highly stressful conditions. These results highlight the potential of rosehip-enriched biopolymer films as a sustainable and environmentally friendly packaging alternative to extend the shelf life of perishable fruits.

期刊论文 2025-05-01 DOI: 10.1016/j.ijbiomac.2025.141023 ISSN: 0141-8130

Bread wheat (Triticum aestivum L.) is a major food grain crop predominantly grown in semi-arid regions. Nevertheless, its productivity is greatly affected by drought, posing a significant challenge to sustainable cultivation. This study aimed to assess the effectiveness of gamma-aminobutyric acid (GABA) seed priming, followed by storage at various temperatures, in enhancing drought tolerance in bread wheat. Seeds of bread wheat were primed with GABA (1 mu M) for 18 h at a 1:5 seed-to-solution ratio and subsequently stored at 15, 25, and 35 degrees C for six weeks. Post-treatment, the seeds were sown in soil maintained at either 75% (well-watered) or 40% (drought stress) water holding capacity. Drought stress delayed germination and impeded plant growth. However, GABA priming improved seedling growth, dry biomass, water content, and photosystem efficiency, while mitigating oxidative damage under drought conditions. Additionally, drought stress induced higher activities of antioxidant enzymes and leaf free proline and glycinebetaine contents, leaf soluble phenolics, and leaf GABA contents, all of which were further enhanced by GABA priming. Storage of primed seeds at 25 degrees C yielded the most beneficial results, followed by 15 degrees C. Overall, GABA seed priming, particularly when stored at 25 degrees C, significantly bolstered the antioxidant defense mechanisms and leaf proline and glycinebetaine, leaf soluble phenolics and leaf GABA accumulation, thereby sustaining photosystem efficiency and growth in wheat under drought stress.

期刊论文 2025-01-23 DOI: 10.1007/s00344-025-11634-6 ISSN: 0721-7595

Sweet cherry (Prunus avium L.) is a highly valued fruit, and optimal nutrient management is crucial for enhancing yield and fruit quality. However, the over-application of chemical fertilizers in cherry cultivation leads to environmental issues such as soil degradation and nutrient runoff. To address this, foliar application, a more targeted and eco-friendly fertilization method, presents a promising alternative. This study evaluates the effects of pre-harvest foliar application of calcium (Ca) (150 and 300 g hL-1) and seaweed extracts (75 and 150 mL hL-1), both individually and in combination, on the physiological and biochemical responses of 'Burlat' sweet cherry trees. Key physiological parameters, including plant water status, photosynthetic performance, and leaf metabolites, were analyzed. Results show that trees treated with seaweed extracts or with combined Ca and seaweed application had improved water status, higher sugar, starch, and protein content, as well as enhanced antioxidant activity and phenolic content compared to those treated solely with calcium. However, the combined treatment did not significantly enhance overall tree performance compared to individual applications. This study highlights the potential of seaweed-based biostimulants in sustainable cherry production.

期刊论文 2024-11-01 DOI: 10.3390/horticulturae10111173

Rich in secondary metabolites with high nutritional value, the residue of Huyou (Citrus aurantium 'Changshanhuyou') is limitedly utilized, representing economic loss and damage to soil and environment. The present study valorized the residue by optimizing extraction conditions, identifying extracted antioxidants, and evaluating diverse bioactivities. The extraction conditions were optimized by single-factor and orthogonal array experimental design. Meanwhile, secondary metabolites were identified by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Also, the bioactivities of the extract against digestive enzyme activities and airway smooth muscle cells (ASMCs) proliferation were investigated. In the single factor experiments, a water-solid ratio of 7:1, a 90-min time, and a temperature below 80 degrees C were found to maximize antioxidant activities, respectively. The orthogonal array analysis results indicated that antioxidant activities reduced significantly as temperature increased, whereas other parameters had little effect. The optimal extraction conditions were determined to be 40 degrees C for 30 min with a water-solid ratio of 7:1, balancing antioxidant activity with energy efficiency. 29 bioactive secondary metabolites were identified as phenolic acids, flavonoids, terpenoids, alkaloids, coumarins, and tannins. Among them, flavonoids and limonoids were further quantified by high-performance liquid chromatography (HPLC) due to their variety and typicalness. Their roles as antioxidants were compared along three dimensions, including ridge regression, Pearson correlation, and the percentage of each flavonoid content. Moreover, the extracts inhibited alpha-glucosidase and pancreatic lipase activities by more than 80% and restored ASMCs proliferation to a control level. This study demonstrated that Huyou residue holds significant potential for applications in functional food.

期刊论文 2024-10-01 DOI: 10.1016/j.fbio.2024.104910 ISSN: 2212-4292

The application of nanotechnology in agriculture has received much attention in order to improve crop yield, quality and food safety. In the present study, a Cd-tolerant endophytic fungus Colletotrichum fructicola KL19 was first ever reported to produce SeNPs, and the production conditions were optimized using the Box-Behnken design in the Response Surface Methodology (RSM-BBD), achieving a peak yield of 1.06 mM under optimal conditions of 2.62 g/20 mL biomass, 4.56 mM Na2SeO3, and pH 6.25. Following this, the properties of the biogenic SeNPs were elucidated by using TEM, DLS, and FTIR, in which the 144.8 nm spherical-shaped SeNPs were stabilized by different functional groups with a negative zeta potential of -18.3 mV. Furthermore, strain KL19 and SeNPs (0, 5, 10, 20 and 50 mg/L) were inoculated in the root zone of small-leaf spinach (Spinacia oleracea L.) seedlings grown in the soil with 33.74 mg/kg Cd under controlled conditions for seven weeks. Impressively, compared with Cd stress alone, the strain KL19 and 5 mg/L SeNPs treatments significantly (p < 0.05) exhibited a reduction in Cd contents (0.62 and 0.50 folds) within the aboveground parts of spinach plants and promoted plants' growth by improving the leaf count (0.92 and 1.36 folds), fresh weight (2.94 and 3.46 folds), root dry weight (4.00 and 5.60 folds) and root length (0.14 and 0.51 folds), boosting total chlorophyll synthesis (0.38 and 0.45 folds), enhancing antioxidant enzymes (SOD, POD) activities, and reducing the contents of reactive oxygen species (MDA, H2O2) in small-leaf spinach under Cd stress. Overall, this study revealed that utilizing endophytic fungus C. fructicola or its derived SeNPs could mitigate reactive oxygen species generation by enhancing antioxidant enzyme activity as well as diminish the absorption and accumulation of Cd in small-leaf spinach, promoting plant growth under Cd stress.

期刊论文 2024-09-01 DOI: 10.3390/plants13172359 ISSN: 2223-7747

Soil flooding, manifesting as submergence or waterlogging stress, significantly impacts plant species composition and agricultural productivity, particularly in regions with low rainfall. This study investigates the biochemical responses of two peanut (Arachis hypogaea L.) genotypes, DH-86 and GJG-32, under waterlogging stress. The experiment involved in-vivo pot trials where peanut plants were subjected to continuous waterlogging for 12 days at the flowering stage. Biochemical analyses of leaves conducted and revealed significant alterations in enzyme activities and metabolite concentrations. Key findings include variations in superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPOD), alpha-amylase, invertase, acid phosphomonoesterase activities, and changes in starch, proline, reducing sugars, and chlorophyll content. SOD, CAT, and GPOD activities exhibited differential responses between genotypes, highlighting DH-86's quicker recovery post-waterlogging. Notably, DH-86 demonstrated higher resilience, reflected in its rapid normalization of biochemical parameters, while GJG-32 showed prolonged stress effects. These findings underscore the importance of antioxidative enzyme systems in mitigating oxidative damage induced by waterlogging. This study enhances our understanding of the biochemical adaptations of peanut genotypes to waterlogging stress, offering valuable insights for breeding programs focused on improving flood tolerance in crops.

期刊论文 2024-09-01 DOI: 10.1016/j.bbrep.2024.101794 ISSN: 2405-5808

Background Rapid urbanization and population growth exert a substantial impact on the accessibility of drinking water resources, underscoring the imperative for wastewater treatment and the reuse of non-potable water in agriculture. In this context, green walls emerge as a potential solution to augment the purification of unconventional waters, simultaneously contributing to the aesthetic appeal and enjoyment of urban areas. This study aims to optimize water management in green walls by investigating the impact of bacterial strains on the biochemical properties and performance of the ornamental accumulator plant, Aptenia cordifolia, grown with various unconventional water sources. The experiments were designed as split plots based on a completely randomized block design with three replications. The main factor was recycled water with three levels (gray water, wastewater from the Kashfroud region of Mashhad, and urban water (control)). The sub-factor included different bacterial strains at four levels, composed of various bacteria combinations, (B1: Psedoumonas flucrecens + Azosporillum liposferum + Thiobacillus thioparus + Aztobactor chorococcum, B2: Paenibacillus polymyxa + Pseudomonas fildensis + Bacillus subtilis + Achromobacter xylosoxidans + Bacillus licheniform, B3: Pseudomonas putida + Acidithiobacillus ferrooxidans + Bacillus velezensis + Bacillus subtilis + Bacillus methylotrophicus + Mcrobacterium testaceum, and the control level without bacterial application (B0). Result The findings revealed significant differences at the 5% probability level across all morphophysiological traits, including plant height, the number and length of lateral branches, growth index, and plant coverage. Moreover, superior morphophysiological traits were observed in plants cultivated in substrates inoculated with wastewater irrigation. Substrates inoculated with bacteria exhibited the highest relative water content (RWC) and chlorophyll levels, coupled with the lowest relative saturation deficit (RSD), electrolyte leakage (EL), and carotenoid levels. Furthermore, plant growth-promoting bacteria (PGPB), from a biochemical perspective, were associated with increased carbohydrates, total protein, and anthocyanin. They also contributed to controlling oxidative stress caused by free radicals by enhancing the activity of antioxidant enzymes, such as guaiacol peroxidase (GPX), polyphenol oxidase (PPO), ascorbate peroxidase (APX), and peroxidase (POD), while reducing catalase enzyme (CAT) activity. This led to increased resistance to stress, as evidenced by a decrease in malondialdehyde and proline levels. The study concludes that the MIX B3, being both ecofriendly and economical, represents an effective strategy for mitigating the adverse effects of wastewater on plants. Conclusion This study showed that plant irrigation using wastewater increases the levels of proline, phenols and oxidative stress. However, the application of plant growth promoting bacteria (PGPB) reduced oxidative damage by increasing antioxidant activity and decreasing proline and phenol levels. These findings show the potential of bacterial treatments to improve plant growth and reduce adverse effects of recycled water irrigation.

期刊论文 2024-08-24 DOI: 10.1186/s12870-024-05511-9 ISSN: 1471-2229

Biostimulants such as ascorbic acid, known as vitamin C, have been reported to have numerous positive roles in plant tolerance to abiotic stresses. However, little is known about the biostimulant effects of ascorbic acid on alfalfa (Medicago sativa). Accordingly, a pot experiment was conducted to investigate the effects of 1 mM ascorbic acid, applied as foliar spray, on the salt tolerance of a Moroccan alfalfa population Demnate 201. One month-old M. sativa seedlings were exposed to 200 mM NaCl for four weeks with or without 1 mM of exogenous ascorbic acid treatment. The results showed that salinity stress significantly (p < 0.001) reduced plant biomass, disturbed photosynthesis-related parameters and induced oxidative stress. However, ascorbic acid foliar spray counteracted the observed negative effects of salinity. It significantly (p < 0.001) improved plant growth and photosynthetic parameters. Besides, stress indicators, including Na+ in shoot and root, hydrogen peroxide and electrolyte leakage, were significantly reduced by 42%, 29%, 12% and 34%, respectively, in treated and salt-stressed alfalfa plants. Interestingly, the decrease in oxidative stress markers was positively correlated to the ability of ascorbic acid to induce the accumulation of flavonoids and to increase the antioxidant activity of guaiacol peroxidase. Furthermore, compatible solutes, such as proline and soluble sugars, were found higher especially in salt-stressed alfalfa plants treated with 1 mM ascorbic acid. Our findings showed that ascorbic acid supply could be an eco-friendly and sustainable technique to mitigate the toxic effect of salt and could improve alfalfa forage production when grown in salt-affected soils.

期刊论文 2024-08-01 DOI: 10.1007/s11756-024-01704-7 ISSN: 0006-3088
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页