There is an increased awareness that the biogeochemical cycling at high latitudes will be affected by a changing climate. However, because biogeochemical studies most often focus on a limited number of elements (i.e., C, P and N) we lack baseline conditions for many elements. In this work, we present a 42-element mass-balance budget for lake dominated catchment in West Greenland. By combining site specific concentration data from various catchment compartments (precipitation, active layer soils, groundwater, permafrost, lake water, lake sediments and biota) with catchment geometries and hydrological fluxes from a distributed hydrological model we have assessed present-day mobilization, transport and accumulation of a whole suite of elements with different biogeochemical behavior. Our study shows that, under the cold and dry conditions that prevails close to the inland ice-sheet: i) eolian processes are important for the transport of elements associated with mineral particles (e.g., Al, Ti, Si), and that these elements tend to accumulate in the lake sediment, ii) that even if weathering rates are slowed down by the dry and cold climate, weathering in terrestrial soils is an important source for many elements (e.g., lanthanides), iii) that the cold and dry conditions results in an accumulation of elements supplied by wet deposition (e.g., halogens) in both terrestrial soils and the lake-water column, and iv) that lead and sulfur from legacy pollution are currently being released from the terrestrial system. All these processes are affected by the climate, and we can therefore expect that the cycling of the majority of the 42 studied elements will change in the future. However, it is not always possible to predict the direction of this change, which shows that more multi-element biogeochemical studies are needed to increase our understanding of the consequences of a changing climate for the Arctic environment.
Microplastic pollution has become an increasingly important environmental issue worldwide in recent years because of its ubiquitous presence in different environmental media and its potential to affect the health of organisms and ecosystems. Aquaculture contributes significantly to the world's food production and nutritional supply, especially in developing countries. Widespread occurrence of microplastics in aquaculture systems has raised great concern regarding aquaculture production and food safety issues of aquaculture products. China is a world leader in aquaculture production, with freshwater aquaculture accounting for 59.1% of total aquaculture production of the world in 2020. Therefore, this review mainly focuses on recent research progress related to microplastic pollution in freshwater aquaculture systems in China. Results from the literature show that microplastics are present in freshwater aquaculture systems at abundances comparable to natural waterbodies in China. Microplastics can be ingested and remain in the body of aquaculture products. Exposure to microplastics can adversely affect the health of aquatic organisms and aquatic ecosystem functions. However, risks of microplastics in real world environment remain uncertain. Consumption of freshwater aquaculture products is not a major pathway for human exposure to microplastics. To provide scientific guidance for governmental decision-making and pollution control, future work should focus on progress in toxicological methodology and understanding the impacts of microplastics at community and ecosystem levels.
There is a rising concern regarding the accumulation of microplastics in the aquatic ecosystems. However, compared to the marine environment, the occurrence, transport, and diffusion of microplastics in freshwater sediment are still open questions. This paper summarizes and compares the methods used in previous studies and provides suggestions for sampling and analysis of microplastics in freshwater sediment. This paper also reviews the findings on microplastics in freshwater sediment, including abundance, morphological characteristics, polymer types, sources, and factors affecting the abundance of microplastics in freshwater sediment. The results show that microplastics are ubiquitous in the investigated sediment of rivers, lakes, and reservoirs, with an abundance of 2-5 orders of magnitude across different regions. Low microplastics concentration was observed in the Ciwalengke River with an average abundance of 30.3 +/- 15.9 items/kg. In particular, an extremely high abundance of microplastics was recorded in the urban recipient in Norway reaching 12,000-200,000 items/kg. Fibers with particle size less than 1 mm are the dominant shape for microplastics in freshwater sediment. In addition, the most frequently recorded colors and types are white/transparent, and PE/PS, respectively. Finally, we conclude that the consistency of morphological characteristics and components of microplastics between the beach or marine sediments and freshwater sediments may be an indicator of these interlinkages and source-pathways. Microplastics in freshwater sediment need further research and exploration to identify its spatial and temporal variations and driving force through further field sampling and implementation of standard and uniform analytical methodologies. (C) 2020 Elsevier B.V. All rights reserved.
Vast stores of millennial-aged soil carbon (MSC) in permafrost peatlands risk leaching into the contemporary carbon cycle after thaw caused by climate warming or increased wildfire activity. Here we tracked the export and downstream fate of MSC from two peatland-dominated catchments in subarctic Canada, one of which was recently affected by wildlife. We tested whether thermokarst bog expansion and deepening of seasonally thawed soils due to wildfire increased the contributions of MSC to downstream waters. Despite being available for lateral transport, MSC accounted for <= 6% of dissolved organic carbon (DOC) pools at catchment outlets. Assimilation of MSC into the aquatic food web could not explain its absence at the outlets. Using delta C-13-Delta C-14-delta N-15-delta H-2 measurements, we estimated only 7% of consumer biomass came from MSC by direct assimilation and algal recycling of heterotrophic respiration. Recent wildfire that caused seasonally thawed soils to reach twice as deep in one catchment did not change these results. In contrast to many other Arctic ecosystems undergoing climate warming, we suggest waterlogged peatlands will protect against downstream delivery and transformation of MSC after climate- and wildfire-induced permafrost thaw.
Climate change is predicted to have far reaching consequences for the mobility of carbon in arctic landscapes. On a regional scale, carbon cycling is highly dependent on interactions between terrestrial and aquatic parts of a catchment. Despite this, studies that integrate the terrestrial and aquatic systems and study entire catchments using site-specific data are rare. In this work, we use data partly published by Lindborg et al. (2016a) to calculate a whole-catchment carbon mass-balance budget for a periglacial catchment in West Greenland. Our budget shows that terrestrial net primary production is the main input of carbon (99% of input), and that most carbon leaves the system through soil respiration (90% of total export/storage). The largest carbon pools are active layer soils (53% of total carbon stock or 13 kg C m (2)), permafrost soils (30% of total carbon stock or 7.6 kg C m (2)) and lake sediments (13% of total carbon stock or 10 kg C m (2)). Hydrological transport of carbon from the terrestrial to aquatic system is lower than in wetter climates, but the annual input of 4100 kg C yr (1) (or 3.5 g C m (2) yr (1)) that enters the lake via runoff is still three times larger than the eolian input of terrestrial carbon. Due to the dry conditions, the hydrological export of carbon from the catchment is limited (5% of aquatic export/storage or 0.1% of total export/storage). Instead, CO2 evasion from the lake surface and sediment burial accounts for 57% and 38% of aquatic export/storage, respectively (or 0.8% and 0.5% of total export/storage), and Two-Boat Lake acts as a net source of carbon to the atmosphere. The limited export of carbon to downstream water bodies make our study system different from wetter arctic environments, where hydrological transport is an important export pathway for carbon. (C) 2019 The Author(s). Published by Elsevier B.V.
In the boreal and subarctic zone, the moss and peat interactions with rainwater and snowmelt water in shallow surface ponds control the delivery of dissolved organic matter (DOM) and metal to the rivers and further to the Arctic Ocean. The transformation of peat and moss leachate by common aquatic microorganisms and the effect of temperature on DOM mineralization by heterotrophs remain poorly known that does not allow predicting the response of boreal aquatic system to ongoing climate change. We used experimental approach to quantify the impact of boreal aquatic bacteria P. reactans, and two culturable bacteria extracted from a thaw lake of the permafrost zone (Bolshezemelskaya tundra, NE Europe): Iodobacter sp. and cyanobacterial associate dominated by order Chroococcales (Synechococcus sp). The interaction of these bacterial cultures with nutrient-free peat and moss leachate was performed in order to (1) quantify the impact of temperature (4, 25 and 45 A degrees C) on peat leachate processing by heterotrophs; (2) compare the effect of heterotrophic bacteria and cyanobacterial associate on moss and peat leachate chemical composition, and (3) quantify the DOC and metal concentration change during cyanobacterial growth on leachate from frozen and thawed peat horizon and moss biomass. The efficiency of peat DOM processing by two heterotrophs was not modified by temperature rise from 4 to 45 A degrees C. The DOC concentration decreased by a factor of 1.6 during 3 days of moss leachate reaction with Iodobacters sp. or cyanobacterial associate at 25 A degrees C. The SUVA(245) increased twofold suggesting an uptake of non-aromatic DOM by both microorganisms. The growth of cyanobacteria was absent on peat leachate but highly pronounced on moss leachate. This growth produced tenfold decrease in P concentration, a factor of 1.5-2.0 decrease in DOC, a factor of 4 and 100 decrease in Fe and Mn concentration, respectively. Adsorption of organic and organo-mineral colloids on bacterial cell surface was more important factor of element removal from organic leachates compared to intracellular assimilation and/or Fe oxyhydroxide precipitation. Overall, we demonstrate highly conservative behavior of peat leachate compared to moss leachate in the presence of culturable aquatic bacteria, a lack of any impact of heterotrophs on peat leachate and their weak impact on moss leachate. A very weak temperature impact on DOM processing by heterotrophs and lack of difference in the biodegradability of DOM from thawed and frozen peat horizons contradict the current paradigm that the warming of frozen OM and its leaching to inland waters will greatly affect microbial production and C cycle. Strong decrease in concentration of P, Fe and Mn in the moss leachate in the presence of cyanobacterial associate has straightforward application for understanding the development of thermokarst lakes and suggests that, in addition to P, Fe and Mn may become limiting micronutrients for phytoplankton bloom in thermokarst lakes.
Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that is underexplored with regards to biodiversity. Although pelagic microbial communities in the Southern Ocean and coastal Antarctic waters have been well-studied, there are fewer investigations of benthic communities and most have a focused geographic range. We sampled surface sediment from 24 sites across a 5500 km region of Western Antarctica (covering the Ross Sea to the Weddell Sea) to examine relationships between microbial communities and sediment geochemistry. Sequencing of the 16S and 18S rRNA genes showed microbial communities in sediments from the Antarctic Peninsula (AP) and Western Antarctica (WA), including the Ross, Amundsen, and Bellingshausen Seas, could be distinguished by correlations with organic matter concentrations and stable isotope fractionation (total organic carbon; TOC, total nitrogen; TN, and delta C-13). Overall, samples from the AP were higher in nutrient content (TOC, TN, and NH4+) and communities in these samples had higher relative abundances of operational taxonomic units (OTUs) classified as the diatom, Chaetoceros, a marine cercozoan, and four OTUs classified as Flarnmeovirgaceae or Flavobacteria. As these OTUs were strongly correlated with TOC, the data suggests the diatoms could be a source of organic matter and the Bacteroidetes and cercozoan are grazers that consume the organic matter. Additionally, samples from WA have lower nutrients and were dominated by Thaumarchaeota, which could be related to their known ability to thrive as lithotrophs. This study documents the largest analysis of benthic microbial communities to date in the Southern Ocean, representing almost half the continental shoreline of Antarctica, and documents trophic interactions and coupling of pelagic and benthic communities. Our results indicate potential modifications in carbon sequestration processes related to change in community composition, identifying a prospective mechanism that links climate change to carbon availability.
We have developed an approach which examines ecosystem function and the potential effects of climatic shifts. The Lake McDonald watershed of Glacier National Park was the focus for two linked research activities: acquisition of baseline data on hydrologic, chemical and aquatic organism attributes that characterize this pristine northern rocky mountain watershed, and further developing the Regional Hydro-Ecosystem Simulation System (RHESSys), a collection of integrated models which collectively provide spatially explicit, mechanistically-derived outputs of ecosystem processes, including hydrologic outflow, soil moisture, and snowpack water equivalence. In this unique setting field validation of RHESSys, outputs demonstrated that reasonable estimates of SWE and streamflow are being produced. RHESSys was used to predict annual stream discharge and temperature. The predictions, in conjunction with the field data, indicated that aquatic resources of the park may be significantly affected. Utilizing RHESSys to predict potential climate scenarios and response of other key ecosystem components can provide scientific insights as well as proactive guidelines for national park management.