共检索到 18

This study employed geo-electrostratigraphic and hydrogeological information to model and assess subsurface structure and hydrogeological properties within a major coastal environment in Nigeria's Niger Delta region, offering a high-resolution approach to groundwater resource management. The selection of the study area was predicated on its critical residential, agricultural, and economic significance, as well as its susceptibility to hydrogeological challenges arising from rapid urbanization and industrial activities. Unlike previous studies that utilized these methods independently, this research combined different geoelectrical technologies to enhance the accuracy of subsurface characterization. The results delineated four distinct geo-layers characterized by specific resistivity values, thicknesses, and depths, providing crucial insights into groundwater infiltration, storage potential, and contamination risks. The first geo-layer (motley topsoil) had resistivity values ranging from 95.2 to 1463.7 Qm. The second layer (sandy clay) exhibited resistivity values ranging from 8.8 to 2485.1 Qm. The third layer, identified as fine sand, exhibited resistivity values ranging from 72.5 to 1332.7 Qm. The fourth layer comprised coarse sands and it exhibited a mean resistivity of 525.98 Qm, indicating a well-drained permeable formation that could serve as an additional aquifer unit. A key innovation of this study was the quantitative assessment of hydrogeological parameters, including anisotropic coefficient, transverse resistance, longitudinal conductance, and groundwater yield potential index. The anisotropic coefficient ranged from 1.0 to 1.78 (mean: 1.17), revealing minimal sediment invasion and confirming the dominance of arenaceous sediments in the Benin Formation. The groundwater yield potential index varied from 3.14 x 102 to 8.1465 x 104 Qm2, highlighting areas of significant aquifer potential. The longitudinal conductance analysis revealed that 69 % of the study area has low aquifer protectivity, underscoring the region's vulnerability to contamination. Another novel contribution was the evaluation of soil corrosivity, which has direct implications for infrastructure longevity. Results indicate that 86 % of the study area is non-corrosive, making it suitable for long-term pipeline installation, a factor rarely integrated into groundwater assessments. The study alsoadvances understanding of the Benin Formation by linking resistivity variations to arenaceous-argillitic intercalations, and this significantly influences groundwater movement and contaminant transport. By synthesizing resistivity models, hydrogeological parameters, and contamination risk assessments, this research provides a more holistic framework for sustainable groundwater management. Furthermore, this research offers a robust framework for similar hydrogeophysical assessments in other regions with comparable geological and hydrological settings. (c) 2025 Guangzhou Institute of Geochemistry, CAS. Published by Elsevier BV. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

期刊论文 2025-06-01 DOI: 10.1016/j.sesci.2025.100243 ISSN: 2451-912X

The complexity of modelling in karst environments necessitates substantial adjustments to existing hydrogeological models, with particular emphasis on accurately representing surface and deep processes. This study proposes an advanced methodology for modelling regional coastal karst aquifers using an integrated SWAT-MODFLOW approach. The focus is on the regional coastal karst aquifer of Salento (Italy), which is characterised by significant heterogeneity, anisotropy and data scarcity, such as limited discharge measurements and water levels over time. The integrated SWAT - MODFLOW approach allows an accurate description of both surface and subsurface hydrological processes specific to karst environments and demonstrates the adaptability of the models to karstspecific features such as sinkholes, dolines and fault permeability. The study successfully addresses the challenges posed by the distinctive characteristics of karst systems through the integration of SWAT-MODFLOW. Additionally, incorporating of satellite data enhances the precision and dependability of the model by augmenting the traditional datasets. The entire simulation period, which included both the calibration and validation phases, extended from 2008 to 2018. The calibration phase occurred between 2008 and 2011, followed by the validation phase between 2015 and 2018. The temporal choices were exclusively based on the availability of meteorological and hydrogeological data. During calibration, satellite data, previous study results, and groundwater level measurements were used to optimize the SWAT and MODFLOW models. Validation subsequently confirmed model accuracy by comparing simulated groundwater levels with observed data, demonstrating a satisfactory root mean square error (RMSE) of 0.22 m. Modelling results indicate that evapotranspiration is the predominant hydrological process, and excessive withdrawals could lead to a water deficit. Simulated piezometric maps provide crucial information on recharge areas and hydraulic compartments delineated by faults. The study not only advances the understanding of the hydrogeology of the specific case study but also provides a valuable reference for future modelling of karst aquifers. Additionally, it highlights the crucial need for ongoing enhancement in the management and monitoring of coastal karst aquifers.

期刊论文 2025-01-01 DOI: 10.1016/j.envsoft.2024.106249 ISSN: 1364-8152

The insufficient taking into account of groundwater as a basis for implementing protection measures for coastal wetlands can be related to the damage they are increasingly exposed to. The aim of this study is to demonstrate the pertinence of combining hydrogeological tools with assessment of pollutant fluxes and stable isotopes of O, H and N, as well as groundwater time-tracers to identify past and present pollution sources resulting from human activities and threatening shallow groundwater-dependent ecosystems. A survey combining physico-chemical parameters, major ions, environmental isotopes (O-18, H-2, N-15 and H-3), with emerging organic contaminants including pesticides and trace elements, associated with a land use analysis, was carried out in southern Italy, including groundwater, surface water and lagoon water samples. Results show pollution of the shallow groundwater and the connected lagoon from both agricultural and domestic sources. The N-isotopes highlight nitrate sources as coming from the soil and associated with the use of manure-type fertilizers related to the historical agricultural context of the area involving high-productivity olive groves. Analysis of EOCs has revealed the presence of 8 pesticides, half of which have been banned for two decades and two considered as pollutant legacies (atrazine and simazine), as well as 15 molecules, including pharmaceuticals and stimulants, identified in areas with human regular presence, including rapidly degradable compounds (caffeine and ibuprofen). Results show that agricultural pollution in the area is associated with the legacy of intensive olive growing in the past, highlighting the storage capacity of the aquifer, while domestic pollution is sporadic and associated with regular human presence without efficient modern sanitation systems. Moreover, results demonstrate the urgent need to consider groundwater as a vector of pollution to coastal ecosystems and the impact of pollutant legacies in planning management measures and policies, with the aim of achieving 'good ecological status' for waterbodies.

期刊论文 2024-12-01 DOI: 10.1016/j.scitotenv.2024.176015 ISSN: 0048-9697

The global concern for risk control of organic contaminated sites is becoming more and more prominent. Traditional ex situ remediation techniques are costly and damage the site, seriously destroying the soil structure and ecological functions. Therefore, in situ means of combining material injection and microbial remediation have become a potential pathway for the green, economical, and efficient remediation of contaminated sites. In this work, a 200 m2 test block was selected for the coupled injection of slow-release oxygen materials and microbial agents, and long-term monitoring of groundwater was carried out. The results showed that the slow-release materials could release oxygen for a period of 90 days, which provided an oxidizing environment for microorganisms to rapidly degrade BTEX. For the pre-adapted indigenous degradation bacterial agent test group, the degradation degree of BTEX was up to 98% after 40 days of injection. The results of the application on the field scale proved the feasibility of reinforcing biostimulation for remediation of underground organic contamination through the coupled injection of slow-release oxygen materials and microbial agents. The results provided theoretical and technical support for the in situ remediation of petroleum hydrocarbon-contaminated sites.

期刊论文 2024-10-01 DOI: 10.3390/w16192815

This study provides prototypical evaluation of groundwater vulnerability to contamination and soil corrosivity in Lokoja region, central Nigeria. By combining the aquifer vulnerability index, integrated electrical conductivity, groundwater confinement overlying strata depth to water table (GOD), and electrical anisotropy coefficient (lambda) derived from lithological composition, resistivity, and layer thickness; the study identifies substantial vulnerabilities in the groundwater resources. Findings indicate that over 70% of the region is moderately to very highly vulnerable to groundwater pollution, especially in the eastern and southern parts, highlighting the need for tailored groundwater management strategies in highly vulnerable areas, covering 40% of the region. Corrosion potential varies spatially, with 80% of the upper layer being minimally corrosive and around 45% of the lower moisture-rich layer showing moderate to significant corrosiveness, emphasizing risks in central and northern zones associated with lithological compositions and moisture content. These accentuate the necessity of rigorous monitoring programs and strict land use regulations to protect aquifers and infrastructure. This research underscores the value of proactive management for safeguarding groundwater resources, providing an invaluable framework for decision-making and resource allocation to tackle contamination and corrosion risks. Importantly, the research addresses a significant research gap in a region with limited scientific exploration.

期刊论文 2024-09-01 DOI: 10.2166/wpt.2024.201

A series of hydrogeologic framework model (HFM)-based steady- and transient-state numerical simulations is performed first using a coupled subsurface flow-transport numerical model to analyze groundwater flow and salt transport in an actual three-dimensional complex coastal aquifer system before and during groundwater pumping. A series of analytic hierarchy process (AHP)-based multi-criteria evaluations is then performed applying a multi-criteria decision-making approach to determine optimal pumping location and rate for a new pumping well in the complex coastal aquifer system during groundwater pumping. The complex coastal aquifer system is composed of six anisotropic fractured porous geologic media (five rock formations and one fault) and three isotropic porous geologic media (three soil formations) and shows high geometric irregularity and significant heterogeneity and anisotropy of the nine geologic media. Results of the steady-state numerical simulations show successful model calibration with 26 measured groundwater levels and two observed seawater intrusion front lines. The latter two are determined by spatial interpolation and extrapolation of electrical conductivity logging data and electrical resistivity survey data, respectively. Based on the status and prospect of necessary water uses and available groundwater resources, the field observations of groundwater and seawater intrusion, and the analyses of the steady-state numerical simulation after the model calibration, six candidate pumping locations are selected for the new pumping well. In addition, from six preliminary individual transient-state numerical simulations, maximum pumping rates at the six candidate pumping locations are calculated first, and a set of six incremental candidate pumping rates is then assigned at each of the six candidate pumping locations. Results of the transients-state numerical simulations show that groundwater flow and salt transport are spatially and temporally changed, and seawater intrusion is further intensified by groundwater pumping. In addition, the magnitudes of such spatial and temporal changes and intensification are significantly different depending on the candidate pumping locations and rates. Results of the steady- and transient-state numerical simulations also show that both complexity (geometric irregularity, heterogeneity, and anisotropy including the fault) and topography have significant effects on the spatial distributions and temporal changes of groundwater flow and salt transport in the coastal aquifer system before and during groundwater pumping. In addition, results of statistical estimations of the mesh Peclet and Courant numbers confirm acceptabilities of minimizing numerical dispersion in the steady- and transient-state numerical simulations. Based on the analyses of the transient-state numerical simulations, eight multiple criteria are chosen to judge, prioritize, and rank the six candidate pumping locations and six candidate pumping rates for optimal pumping. Results of the multi-criteria evaluations determine the optimal pumping location and rate for the new pumping well among the six candidate pumping locations and six candidate pumping rates. In addition, results of consistency checks confirm consistencies of judgments in the multi-criteria evaluations. Numerical simulations with successful model calibration show that spatial and temporal changes in groundwater flow and salt transport significantly depend on candidate pumping locations and rates Statistical estimations of the mesh Peclet and Courant numbers confirm acceptabilities of minimizing numerical dispersion in the numerical simulations Multi-criteria evaluations determine optimal pumping location and rate, and consistency checks confirm consistencies of judgments in the multi-criteria evaluations

期刊论文 2024-06-01 DOI: 10.1029/2023WR035486 ISSN: 0043-1397

Human actions can damage the ecosystems and affect the services depending on them, with ample detrimental consequences. In earlier studies, the Conservation Use Potential (PCU) framework proved useful in assessing the capacity for aquifer recharge, suitable land uses and resistance to erosion at the river basin scale. On the other hand, the joint analysis of PCU and land uses allowed identifying the adequacy of current uses in relation to suitability (natural uses) in various basins. This was especially useful from the management perspective in basins with environmental conflicts, where current uses differed from suitability, because the PCU indicated how and where the conflicts should be mitigated. Besides the use as management tool, the PCU has potential to shed light over environmental issues such as ecosystem services, but that was not tempted so far. The aim of this work was therefore to bridge that knowledge gap and frame the PCU ' s application from the standpoint of Ecosystem Services (ES) assessment. We demonstrated how the PCU could be used to improve provision (recharge), support (sustainable agriculture) and regulation (resistance to erosion) services in a specific basin with land use conflicts (the Upper Rio das Velhas basin, located in Minas Gerais, Brazil), through the planning of suitable uses. It was noted that the studied basin is mostly composed of Very Low, Low and Medium potentials. These classes occur because steep slopes, fragile soils and lithologies with high denudation potential and low nutrient supply dominate in the basin. On the other hand, urban sprawl has a negative impact on all ES, while maintaining agricultural areas with appropriate management can effectively regulate erosion. As per the current results, the premise of using the PCU as joint management -environmental tool was fully accomplished, and is recommended a basis for public policy design and implementation in Brazil and elsewhere.

期刊论文 2024-05-01 DOI: 10.1016/j.scitotenv.2024.171437 ISSN: 0048-9697

Simulation-optimization methods are widely used in dewatering optimization. However, traditional simulation-optimization methods do not address the optimization of well screen length and depth. This study proposes a modified simulation-optimization method for confined aquifer dewatering optimization, which is capable of determining the optimal screen length and depth. The proposed method is based on the linear programming method, and the multivariate adaptive regression splines method is also introduced to develop the prediction model for the parameters required in the linear programming model. A hypothetical case of deep excavation dewatering was optimized using the proposed method to demonstrate its feasibility, with the optimal pumping rate, screen length and depth of each well computed. Furthermore, parametric studies were performed to investigate the effects of some key factors on the optimization results, such as the number of considered pumping wells, required drawdown, insertion ratio of the waterproof curtain, aquifer anisotropy coefficient, and prescribed well screen. The results show that optimal total pumping rate and screen length generally increase with increasing required drawdown and aquifer anisotropy coefficient, while they decrease with increasing well number and insertion ratio of the waterproof curtain. Adjusting screen length is more critical to the optimization results since lower screen depth is always preferred. Optimizing well screen is more essential for higher well number, insertion ratio of the waterproof curtain, and lower aquifer anisotropy coefficient.

期刊论文 2024-05-01 DOI: 10.1016/j.jhydrol.2024.131039 ISSN: 0022-1694

This paper investigates the feasibility of a proposed underground gas storage facility. Based on S gas storage, a large-scale 2D hydromechanical coupling FEA model is established to explore the geo-mechanical properties of S gas storage under a multi-cycle alternating injection and production and validated by the interference logging test. To account for the damage development of fault damage area under the influence of seepage-stress coupling, the soil adopts the Mohr-Coulomb constitutive assumption. Additionally, a zero-thickness cohesive element is proposed as a mechanical model to simulate the fault gouge. The mechanical parameters of zero-thickness cohesive elements are verified by a ring shear test and a preliminary FE model. Thereafter, another refined conceptual finite element (FE) model considering the fault damage area, fault core, water-containing damaged area, overburden damaged area, and the contact model between different damaged areas of the fault and the fault core is developed and validated. The simulation results demonstrate that the initial seal ability of the caprock and faults remains intact. Specifically, (i) the maximum caprock and ground displacements are 8.5 cm and 5.4 cm, respectively. (ii) The most significant slip distance is 0.125 mm, indicating that, leakage under the action of multi-period alternating injection-production, the S aquifer structure had no fault activation and caprock. (iii) The risk of fault activation is higher for high-angle faults compared to low-angle faults. Low-angle faults are more susceptible to shear slip. Providing a scientific reference for the feasibility study of gas storage.

期刊论文 2024-04-01 DOI: 10.1007/s10064-024-03599-9 ISSN: 1435-9529

Groundwater (GW) is sensitive to climate change (CC), and the effects have become progressively more evident in recent years. Many studies have examined the effects of CC on GW quantity. Still, there is growing interest in assessing the qualitative impacts of CC, especially on GW temperature (GWT), and the consequences of these impacts. This study aimed to systematically review recently published papers on CC and GWT, determine the impacts of CC on GWT, and highlight the possible consequences. The Scopus and Web of Science databases were consulted, from which 144 papers were obtained. After an initial screening for duplicate papers, a second screening based on the titles and abstracts, and following an analysis of topic applicability to this subject after examining the full text, 44 studies were included in this review. The analysed scientific literature, published in 29 different journals, covered all five continents from 1995 to 2023. This review indicated that the subject of GWT variations due to CC is of global interest and has attracted significant attention, especially over the past two decades, with many studies adopting a multidisciplinary approach. A general increase in GWT was noted as a primary effect of CC (especially in urban areas); furthermore, the implications of this temperature increase for contaminants and GW-dependent ecosystems were analysed, and various applications for this increase (e.g. geothermal) were evaluated. This review highlights that GWT is vulnerable to CC and that the consequences can be serious and worthy of further investigation.

期刊论文 2024-03-30 DOI: 10.1016/j.heliyon.2024.e27762
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共18条,2页