Groundwater (GW) is sensitive to climate change (CC), and the effects have become progressively more evident in recent years. Many studies have examined the effects of CC on GW quantity. Still, there is growing interest in assessing the qualitative impacts of CC, especially on GW temperature (GWT), and the consequences of these impacts. This study aimed to systematically review recently published papers on CC and GWT, determine the impacts of CC on GWT, and highlight the possible consequences. The Scopus and Web of Science databases were consulted, from which 144 papers were obtained. After an initial screening for duplicate papers, a second screening based on the titles and abstracts, and following an analysis of topic applicability to this subject after examining the full text, 44 studies were included in this review. The analysed scientific literature, published in 29 different journals, covered all five continents from 1995 to 2023. This review indicated that the subject of GWT variations due to CC is of global interest and has attracted significant attention, especially over the past two decades, with many studies adopting a multidisciplinary approach. A general increase in GWT was noted as a primary effect of CC (especially in urban areas); furthermore, the implications of this temperature increase for contaminants and GW-dependent ecosystems were analysed, and various applications for this increase (e.g. geothermal) were evaluated. This review highlights that GWT is vulnerable to CC and that the consequences can be serious and worthy of further investigation.
2024-03-30 Web of SciencePermafrost thaw due to climate change is altering terrestrial hydrological processes by increasing ground hydraulic conductivity and surface and subsurface hydrologic connectivity across the pan-Arctic. Understanding how runoff responds to changes in hydrologic processes and conditions induced by permafrost thaw is critical for water resources management in high-latitude and high-altitude regions. In this study, we analyzed streamflow recession characteristics for 1964-2016 for the Tahe watershed located at the southern margin of the permafrost region in Eurasia. Results reveal a link between streamflow recession and permafrost degradation as indicated by the statistical analyses of streamflow and the modeled ground warming and active layer thickening. The recession constant and the active layer temperatures at depths of 5, 40, 100, and 200 cm simulated by the backpropagation neural network model significantly increased during the study period from 1972 to 2020 due to intensified climate warming in northeastern China. The onset of seasonal active layer thaw was advanced by 10 days, and the modeled active layer thickness increased by 54 cm in this period. The average annual streamflow recession time increased by 11.5 days (+ 53 %) from the warming period (1972-1988) to the thawing period (1989-2016), with these periods determined from breakpoint analysis. These hydrologic changes arose from increased catchment storage and were correlated to increased active layer thickness and longer seasonal thawing periods. These results highlight that permafrost degradation can significantly extend the recession flow duration in a watershed underlain by discontinuous, sporadic, and isolated permafrost, and thereby alter flooding dynamics and water resources in the southern margin of the Eurasian permafrost region.
2022-11-15 Web of SciencePermafrost is mostly warm and thermally unstable on the Tibetan Plateau (TP), particularly in some marginal areas, thereby being susceptible to degrade or even disappear under climate warming. The degradation of permafrost consequently leads to changes in hydrological cycles associated with seasonal freeze-thaw processes. In this study, we investigated seasonal hydrothermal processes of near-surface permafrost layers and their responses to rain events at two warm permafrost sites in the Headwater Area of the Yellow River, northeastern TP. Results demonstrated that water content in shallow active layers changed with infiltration of rainwater, whereas kept stable in the perennially frozen layer, which serves as an aquitard due to low hydraulic conductivity or even imperviousness. Accordingly, the supra-permafrost water acts as a seasonal aquifer in the thawing period and as a seasonal aquitard in the freezing period. Seasonal freeze-thaw processes in association with rain events correlate well with the recharge and discharge of the supra-permafrost water. Super-heavy precipitation (44 mm occurred on 2 July 2015) caused a sharp increase in soil water content and dramatic rises in soil temperatures by 0.3-0.5 degrees C at shallow depths and advancement thawing of the active layer by half a month. However, more summer precipitation amount tends to reduce the seasonal amplitude of soil temperatures, decrease mean annual soil temperatures and thawing indices and thin active layers. High salinity results in the long remaining of a large amount of unfrozen water around the bottom of the active layer. We conclude that extremely warm permafrost with T-ZAR (the temperature at the depth of zero annual amplitude) > 0.5 degrees C is likely percolated under heavy and super-heavy precipitation events, while hydrothermal processes around the permafrost table likely present three stages concerning TZAR of 0 degrees C.
2020-10-15 Web of ScienceFrozen soil undergoing freeze-thaw cycles has effects on local hydrology, ecosystems, and engineering infrastructure by global warming. It is important to clarify the hydrological processes of frozen soil, especially permafrost. In this study, the performance of a distributed cryosphere-hydrology model (WEB-DHM, Water and Energy Budget-based Distributed Hydrological Model) was significantly improved by the addition of enthalpy-based permafrost physics. First, we formulated the water phase change in the unconfined aquifer and its exchanges of water and heat with the upper soil layers, with enthalpy adopted as a prognostic variable instead of soil temperature in the energy balance equation to avoid instability when calculating water phase changes. Second, more reasonable initial conditions for the bottom soil layer (overlying the unconfined aquifer) were considered. The improved model (hereinafter WEB-DHM-pf) was carefully evaluated at three sites with seasonally frozen ground and one permafrost site over the Qinghai-Tibetan Plateau (the Third Pole), to demonstrate the capability of predicting the internal processes of frozen soil at the point scale, particularly the zero-curtain phenomenon in permafrost. Four different experiments were conducted to assess the impacts of augmentation of single model improvement on simulating soil water/ice and temperature dynamics in frozen soil. Finally, the WEB-DHM-pf was demonstrated to be capable of accurately reproducing the zero curtain, detecting long-term changes in frozen soil at the point scale, and discriminating basin-wide permafrost from seasonally frozen ground in a basin at the headwaters of the Yellow River.
2020-09-27 Web of Science