共检索到 4

Microbes are a critical component of soil ecosystems, performing crucial functions in biogeochemical cycling, carbon sequestration, and plant health. However, it remains uncertain how their community structure, functioning, and resul-tant nutrient cycling, including net GHG fluxes, would respond to climate change at different scales. Here, we review global and regional climate change effects on soil microbial community structure and functioning, as well as the climate-microbe feedback and plant-microbe interactions. We also synthesize recent studies on climate change impacts on terrestrial nutrient cycles and GHG fluxes across different climate-sensitive ecosystems. It is generally assumed that climate change factors (e.g., elevated CO2 and temperature) will have varying impacts on the microbial community structure (e.g., fungi-to-bacteria ratio) and their contribution toward nutrient turnover, with potential interactions that may either enhance or mitigate each other's effects. Such climate change responses, however, are difficult to gen-eralize, even within an ecosystem, since they are subjected to not only a strong regional influence of current ambient environmental and edaphic conditions, historical exposure to fluctuations, and time horizon but also to methodolog-ical choices (e.g., network construction). Finally, the potential of chemical intrusions and emerging tools, such as ge-netically engineered plants and microbes, as mitigation strategies against global change impacts, particularly for agroecosystems, is presented. In a rapidly evolving field, this review identifies the knowledge gaps complicating assessments and predictions of microbial climate responses and hindering the development of effective mitigation strategies.

期刊论文 2023-07-15 DOI: 10.1016/j.scitotenv.2023.163412 ISSN: 0048-9697

Methane production in thawing permafrost can be substantial, yet often evolves after long lag phases or is even lacking. A central question is to which extent the production of methane after permafrost thaw is determined by the initial methanogenic community. We quantified the production of methane relative to carbon dioxide (CO2) and enumerated methanogenic (mcrA) gene copies in long-term (2-7 years) anoxic incubations at 4 degrees C using interglacial and glacial permafrost samples of Holocene and Pleistocene, including Eemian, origin. Changes in archaeal community composition were determined by sequencing of the archaeal 16S rRNA gene. Long-term thaw stimulated methanogenesis where methanogens initially dominated the archaeal community. Deposits of interstadial and interglacial (Eemian) origin, formed under higher temperatures and precipitation, displayed the greatest response to thaw. At the end of the incubations, a substantial shift in methanogenic community composition and a relative increase in hydrogenotrophic methanogens had occurred except for Eemian deposits in which a high abundance of potential acetoclastic methanogens were present. This study shows that only anaerobic CO2 production but not methane production correlates significantly with carbon and nitrogen content and that the methanogenic response to permafrost thaw is mainly constrained by the paleoenvironmental conditions during soil formation.

期刊论文 2020-03-01 DOI: 10.1093/femsec/fiaa021 ISSN: 0168-6496

Developing a microbial ecological understanding of Arctic thermokarst lake sediments in a geochemical context is an essential first step toward comprehending the contributions of these systems to greenhouse gas emissions, and understanding how they may shift as a result of long term changes in climate. In light of this, we set out to study microbial diversity and structure in sediments from four shallow thermokarst lakes in the Arctic Coastal Plain of Alaska. Sediments from one of these lakes (Sukok) emit methane (CH4) of thermogenic origin, as expected for an area with natural gas reserves. However, sediments from a lake 10 km to the North West (Siqlukaq) produce CH4 of biogenic origin. Sukok and Siqlukaq were chosen among the four lakes surveyed to test the hypothesis that active CH4-producing organisms (methanogens) would reflect the distribution of CH4 gas levels in the sediments. We first examined the structure of the little known microbial community inhabiting the thaw bulb of arctic thermokarst lakes near Barrow, AK. Molecular approaches (PCR-DGGE and iTag sequencing) targeting the SSU rRNA gene and rRNA molecule were used to profile diversity, assemblage structure, and identify potentially active members of the microbial assemblages. Overall, the potentially active (rRNA dominant) fraction included taxa that have also been detected in other permafrost environments (e.g., Bacteroidetes, Actinobacteria, Nitrospirae, Chloroflexi, and others). In addition, Siqlukaq sediments were unique compared to the other sites, in that they harbored CH4-cycling organisms (i.e., methanogenic Archaea and methanotrophic Bacteria), as well as bacteria potentially involved in N cycling (e.g., Nitrospirae) whereas Sukok sediments were dominated by taxa typically involved in photosynthesis and biogeochemical sulfur (S) transformations. This study revealed a high degree of archaeal phylogenetic diversity in addition to CH4-producing archaea, which spanned nearly the phylogenetic extent of currently recognized Archaea phyla (e.g., Euryarchaeota, Bathyarchaeota, Thaumarchaeota, Woesearchaeota, Pacearchaeota, and others). Together these results shed light on expansive bacterial and archaeal diversity in Arctic thermokarst lakes and suggest important differences in biogeochemical potential in contrasting Arctic thermokarst lake sediment ecosystems.

期刊论文 2018-06-07 DOI: 10.3389/fmicb.2018.01192 ISSN: 1664-302X

The organic carbon of permafrost affected soils is receiving particular attention with respect to its fate and potential feedback to global warming. The structural and activity changes of methanogenic communities in the degrading permafrost-affected wetlands on the Tibetan Plateau can serve as fundamental elements for modelling feedback interaction of ecosystems to climate change. Hence, we aimed at anticipating if and how the rapid environmental changes occurring especially on the high altitude Tibetan platform will affect methanogenic communities. We identified methanogenic community composition, activity and abundance in wetland soils with different hydrological settings, permafrost extent and soil properties and pinpoint the environmental controls. We show that despite a pronounced natural gradient, the Tibetan high elevation wetland soils host a large methanogenic core microbiome. Hydrogenotrophic methanogens, in particular Methanoregula, and H2-dependent methanogenesis were overall dominant although acetoclastic methanogens in addition to hydrogenotrophs were among the dominating taxa in a minerotrophic fen. Tracing the Methanoregula community of the Tibetan Plateau using public databases revealed its global relevance in natural terrestrial habitats. Unlike the composition, the activity and abundance of methanogens varied strongly in the studied soils with higher values in alpine swamps than in alpine meadows. This study indicates that in the course of current wetland and permafrost degradation and the loss in soil moisture, a decrease in the methane production potential is expected on the high Tibetan Plateau but it will not lead to pronounced changes within the methanogenic community structure. (C) 2017 The Authors. Published by Elsevier Ltd.

期刊论文 2017-08-01 DOI: 10.1016/j.soilbio.2017.03.007 ISSN: 0038-0717
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页