The Antarctic continent is a crucial area for ultimate determination of permafrost extent on Earth, and its solution depends on the theoretical assumptions adopted. In fact, it ranges from 0.022 x 10(6) to 14 x 10(6) km(2). This level of inaccuracy is unprecedented in the Earth sciences. The novelty of the present study consists in determining the extent of Antarctic permafrost not based exclusively on empirical studies but on universal criteria resulting from the definition of permafrost as the thermal state of the lithosphere, which was applied for the first time to this continent. The area covered by permafrost in Antarctica is ca. 13.9 million km(2), that is its entire surface. This result was also made possible due to the first clear determination of the boundaries and area of the continent. The Antarctic area includes (a) rocky subsurface with (b) continental ice-sheets and (c) shelf glaciers, which, due to their terrigenous origin and belonging to the lithosphere, belongs to the continent in the same way. Antarctica is covered by continuous permafrost, either in a frozen or in a cryotic state. This also significantly influences delimitation of the global extent of permafrost, which can therefore be defined much more accurately. The proposed ice reclassification and its transfer from the hydrosphere to the lithosphere will allow the uniform treatment of ice in the Earth sciences, both on Earth and on other celestial bodies.
Antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) constitute a serious threat to public health, and climate change has been predicted to affect the increase in bacterial pathogens harboring ARGs and VFGs. However, studies on bacterial pathogens and their ARGs and VFGs in permafrost region have received limited attention. In this study, a metagenomic approach was applied to a comprehensive survey to detect potential ARGs, VFGs, and pathogenic antibiotic resistant bacteria (PARB) carrying both ARGs and VFGs in the active layer and permafrost. Overall, 70 unique ARGs against 18 antimicrobial drug classes and 599 VFGs classified as 38 virulence factors were detected in the Arctic permafrost region. Eight genes with mobile genetic elements (MGEs) carrying ARGs were identified; most MGEs were classified as phages. In the metagenomeassembled genomes, the presence of 15 PARB was confirmed. The soil profile showed that the transcripts per million (TPM) values of ARGs and VFGs in the sub-soil horizon were significantly lower than those in the top soil horizon. Based on the TPM value of each gene, major ARGs, VFGs, and these genes in PARB from the Arctic permafrost region were identified and their distribution was confirmed. The major host bacteria for ARGs and VFGs and PARB were identified. A comparison of the percentage identity distribution of ARGs and VFGs to reference databases indicated that ARGs and VFGs in the Arctic soils differ from previously identified genes. Our results may help understand the characteristics and distribution of ARGs, VFGs, and these genes in PARB in the Arctic permafrost region. This findings suggest that the Arctic permafrost region may serve as potential reservoirs for ARGs, VFGs, and PARB. These genes could pose a new threat to human health if they are released by permafrost thawing owing to global warming and propagate to other regions.
Cryosols in tundra ecosystems contain large stocks of organic carbon as peat and as organic cryoturbated layers. Increased organic mater decomposition rate in those Arctic soils due to increasing soil temperatures and to permafrost thawing can lead to the release of greenhouse gases, thus potentially creating a positive feedback on global warming. Instrumentation was installed on permafrost terrain in Salluit (Nunavik, Canada; 62 degrees 14'N, 75 degrees 38'W) to monitor respiration of two Cryosols under both natural and experimental warmed conditions and to simultaneously monitor the soil solution composition in the active layer throughout a thawing season. Two experimental sites under tussock tundra vegetation were set up: one is on a Histic Cryosol (H site) in a polygonal peatland; the other one is on a Turbic Cryosol reductaquic (T site) on post-glacial marine clays. At each site an open top chamber was installed from mid-July to the end of August 2010 to warm the soil surface. Thermistors and soil moisture probes were installed both in natural (N), or non-modified, surface thermal conditions and in warmed (W) stations, i.e. under an open top chamber. At each station, ecosystem respiration (ER) was measured three times per day every second day with an opaque closed chamber linked to a portable IRGA. Soil solutions were also sampled every alternate day at 10, 20 and 30 cm depths and analysed for dissolved organic C (DOC), total dissolved nitrogen (TON) and major elements. The experimental warming thickened the active layer in the Histic soil while it did not in the Turbic soil. In natural conditions, average ER at the HN station (1.27 +/- 0.32 mu mol CO2 m(-2) s(-1)) was lower than at the TN station (1.96 +/- 0.41 mu mol CO2 m(-2) s(-1)). A soil surface warming of 2.4 degrees C lead to a similar to 64% increase in ER at the HW station. At the TW station a similar to 2.1 degrees C increase induced an average ER increase of similar to 48%. Temperature sensitivity of ER, expressed by a Q(10) of 2.7 in the Histic soil and 3.9 in the Turbic Cryosol in natural conditions, decreased with increasing temperatures. There was no difference in soil solution composition between the N and W conditions for a given site. Mean DOC and TDN contents were higher at the H site. The H site soil solutions were more acidic and poorer in major solutes than the T ones, except for NO. The induced warming increased CO2 fluxes in both soils; this impact was however more striking in the Histic Cryosol even if ER was lower than in the Turbic Cryosol. In the Histic Cryosol, the thickening of the active layer would made available for decomposition new organic matter that was previously frozen into permafrost; due to acidic conditions, CO2 would be directly emitted to atmosphere. In contrast, the smaller increase in ER in the Turbic Cryosol may indicate the lack of organic matter input and carbon stabilization because of cold, non-acidic and more concentrated soil solutions; at this site warming mainly stimulates plant-derived respiration without decomposing a newly available carbon pool. (C) 2013 Elsevier Ltd. All rights reserved.