While the sentinel nature of freshwater systems is now well recognized, widespread integration of freshwater processes and patterns into our understanding of broader climate-driven Arctic terrestrial ecosystem change has been slow. We review the current understanding across Arctic freshwater systems of key sentinel responses to climate, which are attributes of these systems with demonstrated and sensitive responses to climate forcing. These include ice regimes, temperature and thermal structure, river baseflow, lake area and water level, permafrost-derived dissolved ions and nutrients, carbon mobilization (dissolved organic carbon, greenhouse gases, and radiocarbon), dissolved oxygen concentrations, lake trophic state, various aquatic organisms and their traits, and invasive species. For each sentinel, our objectives are to clarify linkages to climate, describe key insights already gained, and provide suggestions for future research based on current knowledge gaps. We suggest that tracking key responses in Arctic freshwater systems will expand understanding of the breadth and depth of climate-driven Arctic ecosystem changes, provide early indicators of looming, broader changes across the landscape, and improve protection of freshwater biodiversity and resources.
Arctic hydrology is experiencing rapid changes including earlier snow melt, permafrost degradation, increasing active layer depth, and reduced river ice, all of which are expected to lead to changes in stream flow regimes. Recently, long-term (>60 years) climate reanalysis and river discharge observation data have become available. We utilized these data to assess long-term changes in discharge and their hydroclimatic drivers. River discharge during the cold season (October-April) increased by 10% per decade. The most widespread discharge increase occurred in April (15% per decade), the month of ice break-up for the majority of basins. In October, when river ice formation generally begins, average monthly discharge increased by 7% per decade. Long-term air temperature increases in October and April increased the number of days above freezing (+1.1 d per decade) resulting in increased snow ablation (20% per decade) and decreased snow water equivalent (-12% per decade). Compared to the historical period (1960-1989), mean April and October air temperature in the recent period (1990-2019) have greater correlation with monthly discharge from 0.33 to 0.68 and 0.0-0.48, respectively. This indicates that the recent increases in air temperature are directly related to these discharge changes. Ubiquitous increases in cold and shoulder-season discharge demonstrate the scale at which hydrologic and biogeochemical fluxes are being altered in the Arctic.
The increasing winter streamflow of major Arctic rivers has been well documented. However, the contribution of climate change to winter streamflow and associated mechanisms of streamflow generation during early, mid- and late winter are not fully understood. Among the Arctic rivers, we selected four rivers with relatively few dam effects (Lena, Kolyma, Yukon and Mackenzie rivers) and analysed their climate change-related responses in streamflow during early, mid-, and late winter. Our results showed that the winter streamflow (Qwin) of the Lena, Kolyma, Yukon and Mackenzie rivers increased from 1980 to 2019 by approximately 43%, 72%, 16% and 16% (1.7-5.2 times greater than increases in annual streamflow), respectively. In general, the rate of streamflow increase was the greatest in early winter, followed by mid- and late winter. The streamflow in late winter was particularly sensitive to air temperature changes, and permafrost degradation due to rising temperatures is likely a major factor driving late winter streamflow increases. In contrast to late winter streamflow, the larger rate of increase in early winter streamflow can be mainly attributed to the additional influence of increased late summer precipitation on streamflow generation. The different change rates in winter streamflow among the four river basins are highly determined by permafrost degradation and related baseflow discharge processes. Under warming climate conditions, winter streamflow generation is strongly associated with the enhanced hydrological cycle that is apparent in both the surface (e.g., precipitation and river ice) and the subsurface (the active layer and groundwater discharge).
In order to assess the impact of seasonal active layer thaw and thermokarst on river flow and turbidity, a gauging station was installed near the mouth of the Sheldrake River in the discontinuous permafrost zone of northern Quebec. The station provided 5 years of water level data and 3 years of turbidity data. The hydrological data for the river showed the usual high water stage occurring at spring snowmelt, with smaller peaks related to rain events in summer. Larger and longer turbidity peaks also occurred in summer in response to warm air temperature spells, suggesting that a large part of the annual suspension load was carried during midsummer turbidity peaks. Supported by geomorphological observations across the catchment area, the most plausible interpretation is that the rapid thawing of the active layer during warm conditions in July led to the activation of frostboils and triggered landslides throughout the river catchment, thus increasing soil erosion and raising sediment delivery into the hydrological network. These results indicate that maximum sediment discharge in a thermokarst-affected region may be predominantly driven by the rate of summer thawing and associated activation of erosion features in the catchment.
Arctic river basins are amongst the most vulnerable to climate change. However, there is currently limited knowledge of the hydrological processes that govern flow dynamics in Arctic river basins. We address this research gap using natural hydrochemical and isotopic tracers to identify water sources that contributed to runoff in river basins spanning a gradient of glacierization (0-61%) in Svalbard during summer 2010 and 2011. Spatially distinct hydrological processes operating over diurnal, weekly and seasonal timescales were characterized by river hydrochemistry and isotopic composition. Two conceptual water sources (meltwater' and groundwater') were identified and used as a basis for end-member mixing analyses to assess seasonal and year-to-year variability in water source dynamics. In glacier-fed rivers, meltwater dominated flows at all sites (typically >80%) with the highest contributions observed at the beginning of each study period in early July when snow cover was most extensive. Rivers in non-glacierized basins were sourced initially from snowmelt but became increasingly dependent on groundwater inputs (up to 100% of total flow volume) by late summer. These hydrological changes were attributed to the depletion of snowpacks and enhanced soil water storage capacity as the active layer expanded throughout each melt season. These findings provide insight into the processes that underpin water source dynamics in Arctic river systems and potential future changes in Arctic hydrology that might be expected under a changing climate. Copyright (c) 2013 John Wiley & Sons, Ltd.