Arctic river discharge is one of the important factors affecting sea-ice melting of Arctic shelf seas. However, such effects have not been given much attention. In this study, the changes in discharge of the Ob, Yenisei, and Lena Rivers and the sea ice of the Kara and Laptev Seas during 1979-2019 were analyzed. Substantial increases in discharge and heat from the discharge and decreases in sea ice concentration (SIC) were detected. The effects of changes in discharge and riverine heat on sea ice changes were investigated. The results showed that the influence of the discharge, accumulated discharge, heat, and accumulated heat on SIC mainly occurred at the beginning and final stages of sea-ice melting. Discharge accelerated the melting of sea ice by increasing the absorption of solar radiation as the impurities contained in the discharge washed to the sea ice surface during the initial and late stages of sea-ice melting. Changes in cumulative riverine heat from May to September greatly contributed to the SIC changes in the Kara and Laptev Seas at the seasonal scale. The SIC reduced by 1% when the cumulative riverine heat increased by 213.2 x 10(6) MJ, 181.5 x 10(6) MJ, and 154.6 x 10(6) MJ in the Lena, Yenisei, and Ob Rivers, respectively, from May to September. However, even in the plume coverage areas in the Kara and Laptev Seas, discharge changes from the three rivers had a limited contribution to the reduction in SIC at annual scales. This work is helpful for understanding the changes in Arctic sea ice.
2023-07The negative freeboard of sea ice (i.e., the height of ice surface below sea level) with subsequent flooding is widespread in the Southern Ocean, as opposed to the Arctic, due to the relatively thicker ice and thinner snow. In this study, we used the observations of snow and ice thickness from 103 ice mass balance buoys (IMBs) and NASA Operation IceBridge Aircraft Missions to investigate the spatial distribution of negative freeboard of Arctic sea ice. The Result showed that seven IMBs recorded negative freeboards, which were sporadically located in the seas around Northeast Greenland, the Central Arctic Ocean, and the marginal areas of the Chukchi-Beaufort Sea. The observed maximum values of negative freeboard could reach -0.12 m in the seas around Northeast Greenland. The observations from IceBridge campaigns also revealed negative freeboard comparable to those of IMBs in the seas around North Greenland and the Beaufort Sea. We further investigated the large-scale distribution of negative freeboard using NASA CryoSat-2 radar altimeter data, and the result indicates that except for the negative freeboard areas observed by IMBs and IceBridge, there are negative freeboards in other marginal seas of the Arctic Ocean. However, the comparison of the satellite data with the IMB data and IceBridge data shows that the Cryosat-2 data generally overestimate the extent and magnitude of the negative freeboard in the Arctic.
2021-04Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic system and assess feedbacks and the extent to which feedbacks (1) are now underway in the Arctic and (2) will shape the future trajectory of the Arctic system. We examine interdependent connections among atmospheric processes, oceanic processes, sea-ice dynamics, marine and terrestrial ecosystems, land surface stocks of carbon and water, glaciers and ice caps, and the Greenland ice sheet. Our emphasis on the interactions between components, both historical and anticipated, is targeted on the feedbacks, pathways, and processes that link these different components of the Arctic system. We present evidence that the physical components of the Arctic climate system are currently in extreme states, and that there is no indication that the system will deviate from this anomalous trajectory in the foreseeable future. The feedback for which the evidence of ongoing changes is most compelling is the surface albedo-temperature feedback, which is amplifying temperature changes over land (primarily in spring) and ocean (primarily in autumn-winter). Other feedbacks likely to emerge are those in which key processes include surface fluxes of trace gases, changes in the distribution of vegetation, changes in surface soil moisture, changes in atmospheric water vapor arising from higher temperatures and greater areas of open ocean, impacts of Arctic freshwater fluxes on the meridional overturning circulation of the ocean, and changes in Arctic clouds resulting from changes in water vapor content.
2013-12-01 Web of Science