共检索到 10

Arctic soil microbial communities may shift with increasing temperatures and water availability from climate change. We examined temperature and volumetric liquid water content (VWC) in the upper 80 cm of permafrost-affected soil over 2 years (2018-2019) at the Bayelva monitoring station, Ny & Aring;lesund, Svalbard. We show VWC increases with depth, whereas in situ temperature is more stable vertically, ranging from -5 degrees C to 5 degrees C seasonally. Prokaryotic metagenome-assembled genomes (MAGs) were obtained at 2-4 cm vertical resolution collected while frozen in April 2018 and at 10 cm vertical resolution collected while thawed in September 2019. The most abundant MAGs were Acidobacteriota, Actinomycetota, and Chloroflexota. Actinomycetota and Chloroflexota increase with depth, while Acidobacteriota classes Thermoanaerobaculia Gp7-AA8, Blastocatellia UBA7656, and Vicinamibacteria Vicinamibacterales are found above 6 cm, below 6 cm, and below 20 cm, respectively. All MAGs have diverse carbon-degrading genes, and Actinomycetota and Chloroflexota have autotrophic genes. Genes encoding beta -glucosidase, N-acetyl-beta-D-glucosaminidase, and xylosidase increase with depth, indicating a greater potential for organic matter degradation with higher VWC. Acidobacteriota dominate the top 6 cm with their classes segregating by depth, whereas Actinomycetota and Chloroflexota dominate below similar to 6 cm. This suggests that Acidobacteriota classes adapt to lower VWC at the surface, while Actinomycetota and Chloroflexota persist below 6 cm with higher VWC. This indicates that VWC may be as important as temperature in microbial climate change responses in Arctic mineral soils. Here we describe MAG-based Seqcode type species in the Acidobacteriota, Onstottus arcticum, Onstottus frigus, and Gilichinskyi gelida and in the Actinobacteriota, Mayfieldus profundus.

2024-11-01 Web of Science

BackgroundAntarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs.ResultsSoil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs.ConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities.APsmQ8MphSAgg4BzZyqdNTVideo AbstractConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities.APsmQ8MphSAgg4BzZyqdNTVideo Abstract

2024-01-12 Web of Science

Arctic soils are the largest pool of soil organic carbon worldwide. Temperatures in the Arctic have risen faster than the global average during the last decades, decreasing annual freezing days and increasing the number of freeze-thaw cy-cles (temperature oscillations passing through zero degrees) per year as the temperature is expected to fluctuate more around 0 degrees C. At the same time, proceeding deepening of seasonal thaw may increase silicon (Si) and calcium (Ca) con-centrations in the active layer of Arctic soils as the concentrations in the thawing permafrost layer might be higher de-pending on location. We analyzed the importance of freeze-thaw cycles for Arctic soil CO2 fluxes. Furthermore, we tested how Si (mobilizing organic C) and Ca (immobilizing organic C) interfere with the soil CO2 fluxes in the context of freeze-thaw cycles. Our results show that with each freeze-thaw cycle the CO2 fluxes from the Arctic soils decreased. Our data revealed a considerable CO2 emission below 0 degrees C. We also show that pronounced differences emerge in Arctic soil CO2 fluxes with Si increasing and Ca decreasing CO2 fluxes. Furthermore, we show that both Si and Ca concentra-tions in Arctic soils are central controls on Arctic soil CO2 release, with Si increasing Arctic soil CO2 release especially when temperatures are just below 0 degrees C. Our findings could provide an important constraint on soil CO2 emissions upon soil thaw, as well as on the greenhouse gas budget of high latitudes. Thus we call for work improving understanding of freeze-thaw cycles as well as the effect of Ca and Si on carbon fluxes, as well as for increased consideration of those factors in wide-scale assessments of carbon fluxes in the high latitudes.

2023-04-20 Web of Science

The soils of Arctic regions are of great interest due to their high sensitivity to climate change. Kvartsittsletta coast in the vicinity of the Baranowski Research Station of the University of Wroclaw constitutes a sequence of differently aged sea terraces covered with different fractions of beach material. It is a parent material for several developing soil types. Despite the low intensity of the modern soil-forming processes, the soil cover is characterized by high diversity. Soil properties are formed mainly by geological and geomorphological factors, which are superimposed by the influence of climate and living organisms. The degree of development of soil is usually an indicator of its relative age. This article highlights the dominant influence of lithology and microrelief over other soilforming factors, including the duration for which the parent material was exposed to external factors. The soils on the highest (oldest) terrace steps of the Kvartsittsletta rarely showed deep signs of soil-forming processes other than cryoturbations. On the youngest terraces, deep-reaching effects of soil processes associated with a relatively warm climate, including the occurrence of cambic horizons, were observed. Their presence in Arctic regions carries important environmental information and may be relevant to studies of climate change.

2023-01-01 Web of Science

Microbial processes, including extracellular enzyme (exoenzyme) production, are a major driver of decomposition and a current topic of interest in Arctic soils due to the effects of climate warming. While enzyme activity levels are often assessed, we lack information on the specific location of these exoenzymes within the soil matrix. Identifying the locations of different soil enzymes is needed to improve our understanding of microbial and overall ecosystem function. Using soil obtained from Utqiagvik, Alaska, our objectives in the study are (1) to measure the activity of enzymes in soil pore water, (2) to examine the distribution of activity among soil particle size fractions using filtration, and (3) to cross these particle size fraction analyses with disruption techniques (blending to shred and sonication to further separate clumped/ aggregated soil materials) to assess how tightly bound the enzymes are to the particles. The results of the soil pore water assays showed little to no enzyme activity (<0.05 nmol g soil(-1) h(-1)), suggesting that enzymes are not abundant in soil pore water. In the soil cores, we detected activity for most of the hydrolytic enzymes, and there were clear differences among the particle size and disruption treatments. Higher activities in unfiltered and 50-mu m filters relative to much finer 2-mu m filters suggested that the enzymes were preferentially associated with larger particles in the soil, likely the organic material that makes up the bulk of these Arctic soils. Furthermore, in the sonication + blending treatment with no filter, 5 of 6 hydrolytic enzymes showed higher activity compared to blending only (and much higher than sonication only), further indicating that enzyme-substrate complexes throughout the organic matter component of the soil matrix are the sites of hydrolytic enzyme activity. These results suggest that the enzymes are likely bound to either the producing microbes, which are bound to the substrates, or directly to the larger organic substrates they are decomposing. This close-proximity binding may potentially minimize the transport of decomposition products away from the microbes that produce them.

2021-10-27 Web of Science

Cold seasons in Arctic ecosystems are increasingly important to the annual carbon balance of these vulnerable ecosystems. Arctic winters are largely harsh and inaccessible leading historic data gaps during that time. Until recently, cold seasons have been assumed to have negligible impacts on the annual carbon balance but as data coverage increases and the Arctic warms, the cold season has been shown to account for over half of annual methane (CH4) emissions and can offset summer photosynthetic carbon dioxide (CO2) uptake. Freeze-thaw cycle dynamics play a critical role in controlling cold season CO(2)and CH(4)loss, but the relationship has not been extensively studied. Here, we analyze freeze-thaw processes through in situ CO(2)and CH(4)fluxes in conjunction with soil cores for physical structure and porewater samples for redox biogeochemistry. We find a movement of water toward freezing fronts in soil cores, leaving air spaces in soils, which allows for rapid infiltration of oxygen-rich snow melt in spring as shown by oxidized iron in porewater. The snow melt period coincides with rising ecosystem respiration and can offset up to 41% of the summer CO(2)uptake. Our study highlights this important seasonal process and shows spring greenhouse gas emissions are largely due to production from respiration instead of only bursts of stored gases. Further warming is projected to result in increases of snowpack and deeper thaws, which could increase this ecosystem respiration dominate snow melt period causing larger greenhouse gas losses during spring.

2020-09-01 Web of Science

Floodplains are one of the most dynamic and youngest areas of the Earth's Quaternary surface. They are located in transitional conditions (land-ocean) of the permafrost zone of present and of particular interest for ongoing geochemical processes and soil/water balance. The soil thermal and water regimes of polar soils are crucial for the development of vegetation cover as well as production, accumulation and redistribution of organic matter. This work characterizes the hydrological properties of soils formed in Russian Arctic. The data showed differences in water holding capacity between soils formed in conditions of seasonal flooding (soil stratification, redistribution of organic and mineral matter through the soil profile) and those not influenced by flooding in Lena River Delta (gradual decreasing of water holding capacity as a function of depth). Both of the soil profiles from the Yamal Peninsula are characterized by a gradually decreasing water-holding capacity with depth. The hydrological regime characteristics were strongly related to the depth of the active layer. The intensity and rate of the thawing/freezing processes depends on the features of the hydrological regime. In this study, significant differences were noted in the soil characteristics of the two study areas. That is why the profile values of water-holding capacity differed among the study sites. The predicted global climate change and high sensitivity of Arctic ecosystems may lead to significant changes in permafrost-affected landscapes and may alter their water regime in a very prominent way, as permafrost degrades and lateral and vertical water flow in the basins of large arctic rivers changes.

2020-01-01 Web of Science

Background: Climate models predict substantial changes in temperature and precipitation patterns across Arctic regions, including increased winter precipitation as snow in the near future. Soil microorganisms are considered key players in organic matter decomposition and regulation of biogeochemical cycles. However, current knowledge regarding their response to future climate changes is limited. Here, we explore the short-term effect of increased snow cover on soil fungal, bacterial and archaeal communities in two tundra sites with contrasting water regimes in Greenland. In order to assess seasonal variation of microbial communities, we collected soil samples four times during the plant-growing season. Results: The analysis revealed that soil microbial communities from two tundra sites differed from each other due to contrasting soil chemical properties. Fungal communities showed higher richness at the dry site whereas richness of prokaryotes was higher at the wet tundra site. We demonstrated that fungal and bacterial communities at both sites were significantly affected by short-term increased snow cover manipulation. Our results showed that fungal community composition was more affected by deeper snow cover compared to prokaryotes. The fungal communities showed changes in both taxonomic and ecological groups in response to climate manipulation. However, the changes were not pronounced at all sampling times which points to the need of multiple sampling in ecosystems where environmental factors show seasonal variation. Further, we showed that effects of increased snow cover were manifested after snow had melted. Conclusions: We demonstrated rapid response of soil fungal and bacterial communities to short-term climate manipulation simulating increased winter precipitation at two tundra sites. In particular, we provide evidence that fungal community composition was more affected by increased snow cover compared to prokaryotes indicating fast adaptability to changing environmental conditions. Since fungi are considered the main decomposers of complex organic matter in terrestrial ecosystems, the stronger response of fungal communities may have implications for organic matter turnover in tundra soils under future climate.

2019-09-18 Web of Science

Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 +/- 0.11 vs. 2.81 +/- 0.6 mg N2O m(-2) d(-1)). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by similar to 90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.

2017-06-13 Web of Science

The fate of the carbon stocked in permafrost following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but no comprehensive study has yet addressed their composition and functional potential in permafrost. Here, a 2-m deep permafrost sample and its overlying active layer soil were subjected to metagenomic sequencing, quantitative PCR (qPCR) and microarray analyses. The active layer soil and the 2-m permafrost microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two samples also possessed a highly similar spectrum of functional genes, especially when compared with other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both samples in the metagenomic libraries and some (for example, pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2-m permafrost showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated using qPCR and showed that the whole-community genome amplification technique used caused representational biases in the metagenomic libraries by increasing the abundance of Bacteroidetes and decreasing the abundance of Actinobacteria. This study describes for the first time the detailed functional potential of permafrost-affected soils. The ISME Journal (2010) 4, 1206-1214; doi: 10.1038/ismej.2010.41; published online 15 April 2010

2010-09-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页