Carbonaceous aerosols (CA) strongly impact regional and global climate through their light-absorbing and scattering properties, yet their effects remain uncertain in dust-influenced regions. We investigated the optical properties, source contributions, and radiative impacts of CA at two climatically distinct regions in northwestern India: an arid region (AR, Jodhpur; post-monsoon) and a semi-arid region (SAR, Kota; winter). Mean absorption & Aring;ngstr & ouml;m exponent (AAE) values were comparable between the two regions (AR: 1.416 +/- 0.173; SAR: 1.395 +/- 0.069), but temporal cluster analysis revealed source-specific variability, with lower AAE during traffic-dominated periods (similar to 1.30) and elevated AAE during solid fuel and biomass combustion (1.68 in AR and 1.52 in SAR). While equivalent BC (eBC) levels were higher in AR with a relatively uniform liquid-fuel contribution (BClf = 80.06 +/- 1.98 %), the mass absorption cross- of BC (MAC(BC)) in SAR was similar to 4.5X greater, driven by local solid fuel combustion and transported biomass burning emissions (BCsf = 34.61 +/- 6.88 %). Mie modelling indicated higher SSA in AR due to higher contribution of mineral dust, in contrast to SAR, where carbonaceous aerosols caused stronger absorption, forward scattering, and higher imaginary refractive index (k(OBD)). Although absorption enhancement (E-lambda) was slightly higher in AR (similar to 1.11 vs. similar to 0.99), SAR aerosols nearly doubled the warming potential (Delta RFE), with RFE values of similar to 0.87 W/m(2) in SAR versus similar to 0.43 W/m(2) in AR. These findings highlight strong source-specific and site-specific variability in aerosol absorption and radiative, emphasizing the need to integrate region-specific parameters into climate models and air quality assessments for data-scarce arid and semi-arid South Asian environments.
Ecosystem carbon use efficiency (CUE) is a key indicator of an ecosystem's capacity to function as a carbon sink. While previous studies have predominantly focused on how climate and resource availability affect CUE through physiological processes during the growing season, the role of canopy structure in regulating carbon and energy exchange, especially its interactions with winter climate processes and nitrogen use efficiency (NUE) in shaping ecosystem CUE in semi-arid grasslands, remains insufficiently understood. Here, we conducted a 5-year snow manipulation experiment in a temperate grassland to investigate the effects of deepened snow on ecosystem CUE. We measured ecosystem carbon fluxes, soil nitrogen concentration, species biomass, plants' nitrogen concentration, canopy height and cover and species composition. We found that deepened snow increased soil nitrogen availability, while the concurrent rise in soil moisture facilitated nutrient acquisition and utilization. Together, these changes supported greater biomass accumulation per unit of nitrogen uptake, thereby enhancing NUE. In addition, deepened snow favoured the dominance of C3 grasses, which generally exhibit higher NUE and greater height than C3 forbs, providing a second pathway that further elevated community-level NUE. The enhanced NUE, through both physiological efficiency and compositional shifts, promoted biomass production and facilitated the development of larger canopy volumes. Larger canopy volumes under deepened snow increased gross primary production through improved light interception, while the associated increase in autotrophic maintenance respiration was moderated by higher NUE. Besides, denser canopies reduced understorey temperatures throughout the day, particularly at night, thereby suppressing heterotrophic respiration. Ultimately, deepened snow increased ecosystem CUE by enhancing carbon uptake while limiting respiratory carbon losses. Synthesis. These findings demonstrated the crucial role of biophysical processes associated with canopy structure and NUE in regulating ecosystem CUE, which has been largely overlooked in previous studies. We also highlight the importance of winter processes in shaping carbon sequestration dynamics and their potential to modulate future grassland responses to climate change.
Due to the serious environmental pollution generated by plastic packaging, chitosan (CS)-based biodegradable films are gradually gaining popularity. However, the limited antioxidant and bacteriostatic capabilities of CS, the poor mechanical properties and water resistance of pure CS films limit their widespread adoption in food packaging. In this study, new multifunctional bioactive packaging films containing monosaccharide-modified CS and polyvinyl alcohol (PVA) were prepared to address the shortcomings of pure CS films. Initially, Maillard reaction (MR) products were prepared by conjugating chitosan with galactose/mannose (CG/CM). The successful preparation of CG/CM was confirmed using UV spectroscopy, fluorescence spectroscopy, fourier transform infrared spectroscopy (FTIR) and high-performance gel permeation chromatography (HPGPC). At an 8 mg/mL concentration, the DPPH radical scavenging activities of CM and CG were 5 and 15 times higher than that of CS, respectively. At the maximum concentration of 200 mu g/mL, both CM and CG exhibited greater inhibitory effects on the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, compared to CS. Additionally, CM and CG demonstrated significantly stronger protection against oxidative damage in Vero cells than CS. These results indicate that CG and CM possess superior antioxidant and antibacterial capabilities in comparison to CS. Then, the effects of the MR on the structures and functional properties of chitosan-based films were extensively examined. Compared with pure CS films, the MR in the CG/CM films significantly changed the film microstructure, enhanced the UV-barrier property and water resistance, and only slightly reduced thermal stability. The MR reduced the tensile strength but increased the elongation at break. Meanwhile, the composite films hold good soil degradation ability. Moreover, the CG/CM films possessed excellent antioxidant and antibacterial properties and demonstrated superior fresh-keeping capacity in the preservation of strawberries and cherry tomatoes (effectively prolonged for at least 2 days or 3-6 days). Our study indicates that CG/CM films can be used as a promising biodegradable antioxidant and antibacterial biomaterial for food packaging.
Aerosol optical properties and radiative forcing critically influence Earth's climate, particularly in semi-arid regions. This study investigates these properties in Yinchuan, Northwest China, focusing on aerosol optical depth (AOD), single-scattering albedo (SSA), & Aring;ngstr & ouml;m Index, and direct radiative forcing (DRF) using 2023 CE-318 sun photometer data, HYSPLIT trajectory analysis, and the SBDART model. Spring AOD peaks at 0.58 +/- 0.15 (500 nm) due to desert dust, with coarse-mode particles dominating, while summer SSA reaches 0.94, driven by fine-mode aerosols. Internal mixing of dust and anthropogenic aerosols significantly alters DRF through enhanced absorption, with spring surface DRF at -101 +/- 22W m-2 indicating strong cooling and internal mixing increasing atmospheric DRF to 52.25W m-2. These findings elucidate dust-anthropogenic interactions' impact on optical properties and radiative forcing, offering critical observations for semi-arid climate research.
The negative impact of climate change is potentially damaging agroecosystem services that have constrained agricultural production and caused water scarcity in Central Asian countries, particularly in Uzbekistan. This study evaluates the efficiency of full (FDI) and deficit (DDI) drip irrigation regimes for amaranth (Amaranthus spp.) cultivation in the Tashkent region of Uzbekistan using the HYDRUS-1D simulation model. Field experiments were conducted over two growing seasons, accompanied by soil moisture monitoring, root zone analysis, and crop performance measurements while the accuracy of the obtained results was assessed against ground measured data. The results showed that compared to the FDI regime, amaranth under the DDI improved water productivity by 56.5% while exhibiting tolerance to water scarcity. The Pearson correlation analysis revealed a strong relationship between the simulated and observed SWC data for both irrigation regimes (R2 = 0.862 for FDI and R2 = 0.936 for DDI), indicating the model's predictive reliability. Although FDI produced higher yield (2004 kg/ha) over the two-year period, which was 25% (2 t ha-1) higher than the DDI regime (1,604 kg/ha). However, DDI demonstrated significantly greater water productivity (56.5% higher), attributed to reduced unproductive evaporation and the C4 nature of amaranth. Root system analysis revealed deeper penetration under DDI, suggesting adaptive responses to water stress. The findings of this study suggest that implementing precise irrigation technology in amaranth cultivation combined with the use of the HYDRUS-1D model in the context of inevitable climate change, can ensure the long-term sustainable management of water and land resources in arid regions.
Fluorite (CaF2) leaching and weathering (30 days) were conducted to measure fluoride dissolution in semiarid endemic soil and controlled synthetic solutions, and determining the main chemical species involved in these processes via atomic force microscopy (AFM), X-ray diffraction (XRD) and Scanning electron microscopy (SEM-EDS). Ecological health response in this system was assessed exposing Allium cepa bulbs to 10, 50, 100, 450, 550 and 950 mg CaF2 kg-1 soil to determine genotoxic damage, protein and systemic fluorine concentrations. Results indicated 3 cycles of passive-active fluorite dissolution enabling fluoride concentrations up to 164 mg L-1 under endemic conditions; however, highest fluoride dissolution was 780 mg L-1 for synthetic sulfates solution. Cyclic behavior was associated with the formation of ultrafine-sized calcite (CaCO3)-like compounds. Fluorine concentrations ranged from 5 to 300 mg kg-1 in vegetable tissue. The electrophoretic profiles revealed changes in the protein expression after 7, 15 and 25 days of exposure. Genotoxic damage rate was 50, 82 and 42% for these exposures (950 mg CaF2 kg-1 soil). The dose-response curves of the normalized total protein content revealed the kinetics vegetable health damage rates for only 7 and 25 days. This behavior was best adjusted for only 7 days. These findings exhibited characteristics for initial damage and adaptation-recovery stage after 15 days. Environmental implications of these findings were further discussed.
The growth and evolution of sinkholes are a considerable proportion of the damage related to subsidence disaster in alluvial areas after ground water extraction for irrigation. In this research it was tried to study the evolution of the sinkholes from the birth point to the stabilization or final step. In the Eqlid-Abarkooh alluvial fan was selected an area about 300 km2 with giant sinkholes where consist; the city of Abarkooh, arable irrigated lands and desert rangelands. The major aspect on the study area was southwest to northeast where it ended to Abarkooh playa. For investigating the formation and evolution of these sinkholes in the study area, field observation for 2 years were done. Soil samples were taken from surface soils (0-25 cm) near and far of the sinkholes. Moreover, 4 soil samples were obtained from the deepest sinkhole as control sample in the study area. Chemical, physical and mechanical soil analyses were performed. Finally, the Ground Penetrating Radar (GPR) method were done for detection subsurface holes to depth of 4 m around the sinkholes. The chemical soil properties results include Electro Conductivity (EC) and the ratio of Ca2+/Mg2+ in lime which was important factors to formation of sinkholes changed from 2.05 to 19.3 dS/m, 0.15 to 6 respectively. The mechanical soil parameters such as Coefficient of Linear Extensibility (COLE) and Plasticity Index (PI) changed from 0.05 to 1.67, 0.99% to 15% respectively. According to sinkhole development, the results obtained that there was a relationship between diameter of sinkhole obtained from 0.6 to 15 m and groundwater extraction quantity changed from 0.18 to 18.14 m3/ha over 25 years. The groundwater level dropped 15 m and sinkhole volume variation obtained 0.014 to 2650 m3 over 25 years. Field discovery and google earth images showed that sinkholes were developed in 3 phases as (1) growth phase (2) mature and (3) steady phases up to about 25 years. The GPR results found some land breaks and a hole underground in the activation and growth phase of sinkhole evolution. Finally, according to some soil parameters and GPR results, the sinkhole hazard map was created in the study area.
Plant lateral root damage is an important ecological problem of vegetation degradation in semi-arid mining areas in western China. The damage mechanism and influencing factors of plant lateral roots caused by stress changes in root-soil layer induced by mining urgently need to be explored in depth. Based on the field survey data of plant roots, combined with quasi-cohesion theory and anchoring theory, and through the control variable method, a numerical model considering four key parameters, namely mining height, advancing distance, mining speed and coal seam burial depth, was established by FLAC3D software to analyze the macroscopic mechanical disturbance characteristics of root-soil complex and plant lateral roots. The research results show that: the stress on the bottom of the root-soil layer above the goaf area is higher than that on the surface; During the advancement of the working face from 60 m to 110 m, the failure range of the plastic zone of the root-soil layer and the stress on the lateral roots of plants showed an increasing trend, and the stress on lateral roots increases up to 3.3 MPa when the working face advances from 80 m to 110 m; in the disturbance zone, the maximum stress of the lateral roots and the failure range of the plastic zone of the root-soil layer increase with the increase of mining height, but decrease with the increase of coal seam burial depth; the change of the mining speed has little effect on the stress of the lateral roots and the failure range of the plastic zone of the root-soil layer, the maximum stress difference on the lateral roots between the maximum and minimum mining rates is only about 0.58 MPa. In addition, compared with plant roots with only the main root, plant roots with lateral root structure show better tensile and shear resistance in the root-soil layer, which shows that the presence of lateral roots help to enhance the overall stability and damage resistance of plant roots. FLAC3D was used to construct a three-dimensional visualization numerical simulation model of plant lateral root, which revealed the macroscopic mechanical response mechanism of plant lateral root damage induced by mining, and clarified the influence of various factors on plant lateral root stress damage induced by mining.The research findings enrich the understanding of plant damage mechanisms induced by underground coal mining in semi-arid areas.
Biodegradability and eco-friendliness are the most importance topic to consider in the development of new products. Commercial hydrogels for agriculture applications are made from fully synthetic polymers, which is non-biodegradable and harmful to environment. The utilization of polysaccharide in hydrogels production has sparked the rise of biodegradable hydrogels (BHs). However, using it alone results in poor mechanical properties and very fast degradation. Therefore, combining it with other materials as a composite is necessary. This article reviewed the development of BHs in the last 5 years. Classifications, materials resources, preparation methods, biodegradability of BHs, seeds germination and plant growth performance are critically investigated. Fundamental concepts such as definitions and application methods of BHs are described. Finally, important conclusions and outlook have been mentioned at the end of this article.
Land degradation can cause food insecurities and can damage ecosystems. This study highlights the potential of cyanobacteria (Anabaena variabilis, Spirulina platensis, Scytonema javanicum, and Nostoc commune), along with bacteria (Bacillus sp. SSAU-2), and their consortia to form biological soil crust, restoring soil properties and promoting plant growth. The efficiency of soil improvement was characterized by physiochemical parameters such as phosphate solubilization, %TOC, pH, and salinity. Scanning electron microscopy and a pot experiment were utilized to observe the morphological and soil improvement studies. Bacterial inoculation resulted in significant improvements in soil fertility, such as exopolysaccharide, organic carbon, organic matter, phosphorus content, and total soil porosity. Cyanobacteria consortia were more effective than monocultures at improving soil fertility and promoting barley plant development. The potential value of selected cyanobacteria and bacterial consortia as a useful tool for the restoration of degraded land is demonstrated experimentally by this study.