共检索到 4

Flash floods are highly destructive natural disasters, particularly in arid and semi-arid regions like Egypt, where data scarcity poses significant challenges for analysis. This study focuses on the Wadi Al-Barud basin in Egypt's Central Eastern Desert (CED), where a severe flash flood occurred on 26-27 October 2016. This flash flood event, characterized by moderate rainfall (16.4 mm/day) and a total volume of 8.85 x 106 m3, caused minor infrastructure damage, with 78.4% of the rainfall occurring within 6 h. A significant portion of floodwaters was stored in dam reservoirs, reducing downstream impacts. Multi-source data, including Landsat 8 OLI imagery, ALOS-PALSAR radar data, Global Precipitation Measurements-Integrated Multi-satellite Retrievals for Final Run (GPM-FR) precipitation data, geologic maps, field measurements, and Triangulated Irregular Networks (TINs), were integrated to analyze the flash flood event. The Soil Conservation Service Curve Number (SCS-CN) method integrated with several hydrologic models, including the Hydrologic Modelling System (HEC-HMS), Soil and Water Assessment Tool (SWAT), and European Hydrological System Model (MIKE-SHE), was applied to evaluate flood forecasting, watershed management, and runoff estimation, with results cross-validated using TIN-derived DEMs, field measurements, and Landsat 8 imagery. The SCS-CN method proved effective, with percentage differences of 5.4% and 11.7% for reservoirs 1 and 3, respectively. High-resolution GPM-FR rainfall data and ALOS-derived soil texture mapping were particularly valuable for flash flood analysis in data-scarce regions. The study concluded that the existing protection plan is sufficient for 25- and 50-year return periods but inadequate for 100-year events, especially under climate change. Recommendations include constructing additional reservoirs (0.25 x 106 m3 and 1 x 106 m3) along Wadi Kahlah and Al-Barud Delta, reinforcing the Safaga-Qena highway, and building protective barriers to divert floodwaters. The methodology is applicable to similar flash flood events globally, and advancements in geomatics and datasets will enhance future flood prediction and management.

期刊论文 2025-03-08 DOI: 10.3390/hydrology12030054

Soil-borne pathogens have economic significance regarding the damage they cause to crop production worldwide. Arid lands are even more susceptible to soil-borne pathogens damage due to climate extremes such as high temperature and evapotranspiration to precipitation ratio that limits the diversity of crops. More so, some soil-borne pathogens are highly adapted to arid lands' high soil temperature and water limitations. Chemical controls like fungicides and bactericides are widely used in managing soil-borne diseases, but they come at a significant environmental, health, and agricultural cost. On the other hand, biological control of soil-borne pathogens is relatively environment-friendly, safe, has no reported effect on human and animal health, and can improve soil health for optimum ecosystem functioning. Thus, this review presents an overview of soil-borne pathogens infestation in arid lands and the potential of using biological control agents (BCAs) in managing plant disease outbreaks. Some common pathogens in arid lands include Fusarium spp. (pathogenic), Pythium spp., Rhizoctonia solani, and Meloidogyne incognita. Investigations have, however, revealed effective BCAs against soil-borne pathogens, and some examples include Bacillus cereus, Streptomyces atrovirens, Phlebiopsis gigantea, Pseudomonas putida, Trichoderma harzianum, Pythium oligandrum, and Enterobacter amnigenus. The most common mechanisms used by BCAs for controlling soil-borne pathogens include antibiosis, induced systemic resistance, parasitism (mycoparasitism), antagonism, competition for nutrients and space, and indirect plant growth promotion. Recent advances in molecular biology, such as metabarcoding and biomarker transformation, offer promising ways to increase the success rates with the use of BCAs under field conditions. This study suggests that the effectiveness of BCAs can be further enhanced with the addition of soil organic amendments coupled with the cultivation of arid lands adapted crops such as agave and Opuntia spp.

期刊论文 2024-04-01 DOI: 10.1007/s41348-023-00824-7 ISSN: 1861-3829

This study aims to investigate the quantitative relationship between resistivity and the physical and mechanical properties of soil in different types of herbaceous slopes in the alpine arid and semi-arid loess area. The research is conducted in the self-built test area of Changlinggou Basin in Xining Basin. Five types of slopes, including Elymus nutans Griseb., Elymus sibiricus Linn., Agropyron trachycaulum Linn. Gaertn., Festuca arundinacea Schreb., and bare slopes are selected as the research objects. These slopes have been planted for 3 years. The study compares the effects of different herbaceous roots on the physical and mechanical properties of the soil by conducting tests of soil density and water content, and direct shear test on the soils with and without root systems. Based on these tests, a quantitative relationship between the physical and mechanical properties of different slope soils and resistivity data is established using 2D electrical resistivity tomography. The results show that: (1) Compared with the bare slope without planting, the maximum increase of soil moisture content in the upper layer (0-10 cm) of the Elymus sibiricus Linn. slope is 26.53%. The average soil density of the upper layer (0-10 cm) of the Festuca arundinacea Schreb. slope was 18.30% lower than that of the bare slope. The maximum added value of soil cohesion in the upper layer (0-10 cm) of the Elymus nutans Griseb. slope is 2.75 times that of the bare slope. (2) The resistivity characteristics of five types of slopes are affected by root distribution and slope position factors, and the resistivity value decreases with the increase of depth. The soil resistivity value of the four herbaceous slopes is larger than that of the bare slope at 0-20 cm, which is the approximately range of root distribution. (3) There are fitting equations between the physical and mechanical properties and resistivity data of five kinds of slope soils (with correlation coefficients R-2 ranging from 0.48 to 0.77), and the Pearson correlation analysis shows that the cohesion c value of the slope soil has the highest correlation with resistivity, with an R-2 value of 0.765. The results of this study demonstrate that 2D resistivity tomography technology can reflect the physical and mechanical properties of slope soil, as well as the distribution characteristics of plant roots. This provides a theoretical basis and practical guidance for effectively preventing and controlling soil erosion, shallow landslides, and other disasters in the study area and its surrounding areas.

期刊论文 2024-02-11 DOI: 10.16285/j.rsm.2023.1529 ISSN: 1000-7598

The McMurdo Dry Valleys (MDVs), Antarctica, exist in a hyperarid polar desert, underlain by deep permafrost. With an annual mean air temperature of -18 A degrees C, the MDVs receive < 10 cm snow-water equivalent each year, collecting in leeward patches across the landscape. The landscape is dominated by expansive ice-free areas of exposed soils, mountain glaciers, permanently ice-covered lakes, and stream channels. An active layer of seasonally thawed soil and sediment extends to less than 1 m from the surface. Despite the cold and low precipitation, liquid water is generated on glaciers and in snow patches during the austral summer, infiltrating the active layer. Across the MDVs, groundwater is generally confined to shallow depths and often in unsaturated conditions. The current understanding and the biogeochemical/ecological significance of four types of shallow groundwater features in the MDVs are reviewed: local soil-moisture patches that result from snow-patch melt, water tracks, wetted margins of streams and lakes, and hyporheic zones of streams. In general, each of these features enhances the movement of solutes across the landscape and generates soil conditions suitable for microbial and invertebrate communities.

期刊论文 2013-02-01 DOI: 10.1007/s10040-012-0926-3 ISSN: 1431-2174
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页