共检索到 3

Aeolian dust has a great influence on mountain hydrology, climate, and biogeochemical cycles. Dust deposited on glaciers and snowpack of the high alpine mountains in Tibetan Plateau (TP) and its surrounding regions can provide a unique method of determining the high-elevation transport and deposition of Asian dust in the middle and upper troposphere. Long-range-transported (LRT) Asian dust is often transmitted through the high troposphere, thus studies on dust deposition in the high-elevation cryosphere can reflect the LRT information of aeolian dust, and provide an unparalleled record to understand the regional climate and environment change in the Third Pole region. This paper comprehensively reviews the current status of the major factors that determine aeolian dust transport, settling, and cycling, and the key components of this dust-cycles in high elevation cryosphere regions, revealed by glacial snowpack and ice-core dust geochemistry recorded in the mountain glacier areas of TP and western China. Research on glacial dust concentrations indicated that much higher amounts of aeolian dust were found to transport and cycle in the high-elevation troposphere over TP and surroundings, compared to other locations of the globe. Dust concentrations and fluxes in high elevation regions of the TP were closely related to the transport distance of the nearby dust sources (e.g. large deserts and Gobi in western China, and arid deserts on the plateau surface). Isotopes tracers (e.g. Sr-87/Sr-86, and epsilon(Hf), epsilon(Nd)) and dust size distributions revealed that aeolian dust transported over TP mainly originated from the arid and semi-arid deserts and surface crust soils on TP; Aeolian dust from the large deserts of central Asia (e.g. the Taklimakan Desert with small ratio) have not been easily transported to the hinterland of TP under the current climatic conditions. An End-Member Mixing Analysis model was also used to calculate the relative contributions of northern hemisphere dust sources to the TP glacier dust sinks. The marked spatial differences in LRT dust sources of TP glaciers were caused by the large-scale atmospheric circulation strength and interactions in the Asian region. In addition, Asian dust has a large influence on the radiative forcing of glacier and snow melt in which the iron oxide composition constitute an important driving factor. Biogeochemical cycles in cryospheric regions were significantly affected by aeolian dust cycles, influencing glacial ecosystems, meltwater geochemistry (e.g. d(Fe) release) and nutrients supply for downstream aquatic ecosystems. Ice core records for the past hundred years revealed a general decreasing trend of dust storm frequency and atmospheric concentration over the TP region. This work provides new insights and perspectives on aeolian dust transport and cycling in high regions of the troposphere and cryosphere of the TP, identifying critical uncertainties and priorities for future research.

期刊论文 2020-12-01 DOI: 10.1016/j.earscirev.2020.103408 ISSN: 0012-8252

PM2.5 carbonaceous particles were measured at Gosan, South Korea during 29 March-11 April 2002 which includes a pollution period (30 March-01 April) when the highest concentrations of major anthropogenic species (nss-SO4 (2-), NO3 (-), and NH4 (+)) were observed and a strong Asian dust (AD) period (08-10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol.

期刊论文 2015-03-01 DOI: 10.1007/s11356-014-3587-z ISSN: 0944-1344

Northern Tibetan Plateau uplift and global climate change are regarded as two important factors responsible for a remarkable increase in dust concentration originating from inner Asian deserts during the Pliocene-Pleistocene period. Dust cycles during the mid-Pliocene, last glacial maximum (LGM), and present day are simulated with a global climate model, based on reconstructed dust source scenarios, to evaluate the relative contributions of the two factors to the increment of dust sedimentation fluxes. In the focused downwind regions of the Chinese Loess Plateau/North Pacific, the model generally produces a light eolian dust mass accumulation rate (MAR) of 7.1/0.28 g/cm(2)/kyr during the mid-Pliocene, a heavier MAR of 11.6/0.87 g/cm(2)/kyr at present, and the heaviest MAR of 24.5/1.15 g/cm(2)/kyr during the LGM. Our results are in good agreement with marine and terrestrial observations. These MAR increases can be attributed to both regional tectonic uplift and global climate change. Comparatively, the climatic factors, including the ice sheet and sea surface temperature changes, have modulated the regional surface wind field and controlled the intensity of sedimentation flux over the Loess Plateau. The impact of the Tibetan Plateau uplift, which increased the areas of inland deserts, is more important over the North Pacific. The dust MAR has been widely used in previous studies as an indicator of inland Asian aridity; however, based on the present results, the interpretation needs to be considered with greater caution that the MAR is actually not only controlled by the source areas but the surface wind velocity.

期刊论文 2011-12-01 DOI: 10.1007/s00382-011-1078-1 ISSN: 0930-7575
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页