共检索到 3

The existence of rock weathering products has an important effect on the infiltration of water in the soil. Understanding the mechanism of water infiltration in a mixed soil and weathered rock debris medium is highly important for soil science and hydrology. The purpose of this study is to explore the effects of mudstone hydrolysis on water infiltration in the soil under different mixing ratios (0-70 %) of weathered mudstone contents. Soil column experiments and numerical modelling were used to study the processes of hydrolysis of weathered mudstone and water infiltration in the mixed medium. The results revealed that water immersion can cause the dense mudstone surface to fall off, thus forming pores, and that the amount of these pores first increase but then decrease over time. The disintegration of post-hydrolysis mudstone debris occurs mainly among particles ranging from 2-2000 mu m, predominantly transforming sand particles into finer fractions. Increasing the mudstone content in the soil from 0 % to 50 % enhances the infiltration rate and cumulative infiltration volume. However, when the mudstone content exceeds 50 %, these parameters decrease. The mudstone weathering products promote water infiltration in the soil within a certain range of mudstone contents, but as the ratio of weathered products increases, excessive amounts of mudstone hinder the movement of water in the soil. The identified transformation phenomenon suggests that the infiltration capacity of mixed soil will not scale linearly with mudstone content. The findings enable some mitigation strategies of geologic hazards based on the hydrological stability in heterogeneous environments.

期刊论文 2025-10-01 DOI: 10.1016/j.jhydrol.2025.133254 ISSN: 0022-1694

The hydraulic effect of plant roots reduces precipitation infiltration and enhances shallow slope stability. However, after root death and decay, soil permeability increases while water-retention capacity decreases. The time-varying mechanisms governing the hydraulic properties of root-soil composites after root decay remain unclear. This study examines the evolution of soil pore structure following root decay. A time-varying soil water retention curve (SWRC) model was developed to characterize changes in water-retention capacity. Additionally, a time-varying saturated infiltration coefficient model and a permeability coefficient prediction model were established to describe variations in hydraulic properties. A one-dimensional soil column infiltration test was conducted on root-soil composites at different stages of root decay to investigate the time-dependent changes in hydraulic properties. The reliability of the proposed models was validated using experimental results. The findings indicate the following: After root death, root biomass, diameter, length, and number decreased with increasing decay time, stabilizing after four months. Root decay led to a reduction in root volume ratio, which altered soil structure and enhanced the permeability of root-soil composites. Longer decay periods increased soil porosity, modifying the soil water characteristic curve and reducing water-retention capacity. Creeping roots decayed more significantly than fibrous roots due to their distinct morphological traits, making changes in hydraulic properties more pronounced in the topsoil. Therefore, plant root decay negatively affects soil hydraulic properties by continuously altering soil pore structure. These findings provide a crucial foundation for understanding the time-dependent mechanisms of hydraulic property variations in root-soil composites during plant root decay.

期刊论文 2025-09-01 DOI: 10.1016/j.jhydrol.2025.133192 ISSN: 0022-1694

Extreme precipitation events (EPEs) are projected to become more frequent and intense due to global warming. Understanding how coastal groundwater levels respond to and recover from these severe events is important for estuarine ecosystems to adapt to global change. Numerical model and non-EPE scenario simulation were used to examine groundwater level recovery time (RT) after Super Typhoon Lekima, which triggered EPEs that resulted in groundwater rise and widespread flooding in the Yellow River Delta (YRD). The three-day rainfall during Lekima totaled 290.9 mm, equivalent to 50 % of the annual rainfall for 2019 (581.5 mm), leading to a general rise in groundwater levels. Groundwater recovery to EPE can be divided into two types: inland and coastal. The RT of groundwater levels in monitoring wells in inland areas ranged from 12 to 89 days, with an average of 56.2 days, and there was spatial variation. However, groundwater levels in monitoring wells close to the coast may not recover. Differences in recovery are reflected in the land-sea gradient, with RT gradually increasing from inland highlands to coastal depressions and lowlands. The results showed that inland aquifers were more resistant to EPEs, while coastal aquifers were less resistant. In addition, EPE can cause groundwater flooding, and areas at lower altitude and close to the sea are more sensitive to flooding. Estuarine groundwater and the ecological processes on which it depends are profoundly affected by the direct and legacy effects of EPEs, including salt contamination, widespread flooding, crop damage, and reduced biodiversity. The study of this event provides case support for the response of estuarine groundwater to EPEs, while highlighting the importance of continuous monitoring.

期刊论文 2024-03-01 DOI: 10.1016/j.jhydrol.2024.130918 ISSN: 0022-1694
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页