Numerical simulation is of great importance to the investigation of changes in frozen ground on large spatial and long temporal scales. Previous studies have focused on the impacts of improvements in the model for the simulation of frozen ground. Here the sensitivities of permafrost simulation to different atmospheric forcing data sets are examined using the Community Land Model, version 4.5 (CLM4.5), in combination with three sets of newly developed and reanalysis-based atmospheric forcing data sets (NOAA Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-I), and NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA)). All three simulations were run from 1979 to 2009 at a resolution of 0.5 degrees x 0.5 degrees and validated with what is considered to be the best available permafrost observations (soil temperature, active layer thickness, and permafrost extent). Results show that the use of reanalysis-based atmospheric forcing data set reproduces the variations in soil temperature and active layer thickness but produces evident biases in their climatologies. Overall, the simulations based on the CFSR and ERA-I data sets give more reasonable results than the simulation based on the MERRA data set, particularly for the present-day permafrost extent and the change in active layer thickness. The three simulations produce ranges for the present-day climatology (permafrost area: 11.31-13.57 x 10(6) km(2); active layer thickness: 1.10-1.26 m) and for recent changes (permafrost area: -5.8% to -9.0%; active layer thickness: 9.9%-20.2%). The differences in air temperature increase, snow depth, and permafrost thermal conditions in these simulations contribute to the differences in simulated results.
Advection of anthropogenic aerosols from the Indo-Gangetic Plain (IGP) and dust aerosols from distant deserts towards a high-altitude station Merak, in the trans-Himalayan region are reported during June -July 2011. In order to differentiate the advection event, aerosol optical properties were examined during aged background conditions at the site. During the aged background conditions, aerosol optical depth (AOD at 500 nm) and Angstrom exponent (alpha) at the station were similar to 0.06 and 1.36, respectively which were increased to 0.13 and 1.62, respectively during the advection event. Further, a strong signature of fine-mode aerosol volume size distribution, dominated by absorbing aerosols, was observed during the advection event. The average atmospheric forcing during the aged background condition was found to be 0.57 Wm(-2) (with corresponding heating rate of 0.05 Kday(-1)) and these results were enhanced to 2.58 Wm(-2) (with corresponding heating rate of 0.22 Kday(-1)) during the advection event. The present study reveals that during the advection event, heating rate in the atmosphere was increased by about four times than the aged background condition. Such atmospheric warming in the region may influence the melting of the Himalayan glaciers and consequently it may effect the local atmospheric circulation. (C) 2014 Elsevier Ltd. All rights reserved.