共检索到 2

In the context of global research in snow-affected regions, research in the Australian Alps has been steadily catching up to the more established research environments in other countries. One area that holds immense potential for growth is hydrological modelling. Future hydrological modelling could be used to support a range of management and planning issues, such as to better characterise the contribution of the Australian Alps to flows in the agriculturally important Murray-Darling Basin despite its seemingly small footprint. The lack of recent hydrological modelling work in the Australian Alps has catalysed this review, with the aim to summarise the current state and to provide future directions for hydrological modelling, based on advances in knowledge of the Australian Alps from adjacent disciplines and global developments in the field of hydrologic modelling. Future directions proffered here include moving beyond the previously applied conceptual models to more physically based models, supported by an increase in data collection in the region, and modelling efforts that consider non-stationarity of hydrological response, especially that resulting from climate change.

期刊论文 2024-07-02 DOI: 10.1080/13241583.2024.2343453 ISSN: 1324-1583

Seasonal snowpacks in marginal snow environments are typically warm and nearly isothermal, exhibiting high inter- and intra-annual variability. Measurements of snow depth and snow water equivalent were made across a small subalpine catchment in the Australian Alps over two snow seasons in order to investigate the extent and implications of snowpack spatial variability in this marginal setting. The distribution and dynamics of the snowpack were found to be influenced by upwind terrain, vegetation, solar radiation, and slope. The role of upwind vegetation was quantified using a novel parameter based on gridded vegetation height. The elevation range of the catchment was relatively modest (185 m), and elevation impacted distribution but not dynamics. Two characteristic features of marginal snowpack behaviour are presented. Firstly, the evolution of the snowpack is described in terms of a relatively unstable accumulation state and a highly stable ablation state, as revealed by temporal variations in the mean and standard deviation of snow water equivalent. Secondly, the validity of partitioning the snow season into distinct accumulation and ablation phases is shown to be compromised in such a setting. Snow at the most marginal locations may undergo complete melt several times during a season and, even where snow cover is more persistent, ablation processes begin to have an effect on the distribution of the snowpack early in the season. Our results are consistent with previous research showing that individual point measurements are unable to fully represent the variability in the snowpack across a catchment, and we show that recognising and addressing this variability are particularly important for studies in marginal snow environments.

期刊论文 2019-06-15 DOI: 10.1002/hyp.13435 ISSN: 0885-6087
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页